This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is relatively prime to N then it is also relatively prime to any divisor M of N . (Contributed by Mario Carneiro, 19-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpdvds | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> K e. ZZ ) |
|
| 2 | simpl2 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> M e. ZZ ) |
|
| 3 | gcddvds | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
| 5 | 4 | simpld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || K ) |
| 6 | ax-1ne0 | |- 1 =/= 0 |
|
| 7 | simprl | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd N ) = 1 ) |
|
| 8 | 7 | neeq1d | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd N ) =/= 0 <-> 1 =/= 0 ) ) |
| 9 | 6 8 | mpbiri | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd N ) =/= 0 ) |
| 10 | 9 | neneqd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K gcd N ) = 0 ) |
| 11 | simprl | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> K = 0 ) |
|
| 12 | simprr | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> M = 0 ) |
|
| 13 | simplrr | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> M || N ) |
|
| 14 | 12 13 | eqbrtrrd | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> 0 || N ) |
| 15 | simpll3 | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> N e. ZZ ) |
|
| 16 | 0dvds | |- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
|
| 17 | 15 16 | syl | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> ( 0 || N <-> N = 0 ) ) |
| 18 | 14 17 | mpbid | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> N = 0 ) |
| 19 | 11 18 | jca | |- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> ( K = 0 /\ N = 0 ) ) |
| 20 | 19 | ex | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K = 0 /\ M = 0 ) -> ( K = 0 /\ N = 0 ) ) ) |
| 21 | simpl3 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> N e. ZZ ) |
|
| 22 | gcdeq0 | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) = 0 <-> ( K = 0 /\ N = 0 ) ) ) |
|
| 23 | 1 21 22 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd N ) = 0 <-> ( K = 0 /\ N = 0 ) ) ) |
| 24 | 20 23 | sylibrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K = 0 /\ M = 0 ) -> ( K gcd N ) = 0 ) ) |
| 25 | 10 24 | mtod | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K = 0 /\ M = 0 ) ) |
| 26 | gcdn0cl | |- ( ( ( K e. ZZ /\ M e. ZZ ) /\ -. ( K = 0 /\ M = 0 ) ) -> ( K gcd M ) e. NN ) |
|
| 27 | 1 2 25 26 | syl21anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) e. NN ) |
| 28 | 27 | nnzd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) e. ZZ ) |
| 29 | 4 | simprd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || M ) |
| 30 | simprr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> M || N ) |
|
| 31 | 28 2 21 29 30 | dvdstrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || N ) |
| 32 | 10 23 | mtbid | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K = 0 /\ N = 0 ) ) |
| 33 | dvdslegcd | |- ( ( ( ( K gcd M ) e. ZZ /\ K e. ZZ /\ N e. ZZ ) /\ -. ( K = 0 /\ N = 0 ) ) -> ( ( ( K gcd M ) || K /\ ( K gcd M ) || N ) -> ( K gcd M ) <_ ( K gcd N ) ) ) |
|
| 34 | 28 1 21 32 33 | syl31anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( ( K gcd M ) || K /\ ( K gcd M ) || N ) -> ( K gcd M ) <_ ( K gcd N ) ) ) |
| 35 | 5 31 34 | mp2and | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) <_ ( K gcd N ) ) |
| 36 | 35 7 | breqtrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) <_ 1 ) |
| 37 | nnle1eq1 | |- ( ( K gcd M ) e. NN -> ( ( K gcd M ) <_ 1 <-> ( K gcd M ) = 1 ) ) |
|
| 38 | 27 37 | syl | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd M ) <_ 1 <-> ( K gcd M ) = 1 ) ) |
| 39 | 36 38 | mpbid | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) = 1 ) |