This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If M is relatively prime to N , then the GCD of K with M x. N is the product of the GCDs with M and N respectively. (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpmulgcd2 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> K e. ZZ ) |
|
| 2 | simpl2 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> M e. ZZ ) |
|
| 3 | simpl3 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> N e. ZZ ) |
|
| 4 | 2 3 | zmulcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( M x. N ) e. ZZ ) |
| 5 | 1 4 | gcdcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) e. NN0 ) |
| 6 | 1 2 | gcdcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) e. NN0 ) |
| 7 | 1 3 | gcdcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) e. NN0 ) |
| 8 | 6 7 | nn0mulcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) e. NN0 ) |
| 9 | mulgcddvds | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
|
| 10 | 9 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
| 11 | gcddvds | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
|
| 12 | 1 2 11 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
| 13 | 12 | simpld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) || K ) |
| 14 | gcddvds | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) ) |
|
| 15 | 1 3 14 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) ) |
| 16 | 15 | simpld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) || K ) |
| 17 | 6 | nn0zd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) e. ZZ ) |
| 18 | 7 | nn0zd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) e. ZZ ) |
| 19 | 17 18 | gcdcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) e. NN0 ) |
| 20 | 19 | nn0zd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) e. ZZ ) |
| 21 | gcddvds | |- ( ( ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) ) |
|
| 22 | 17 18 21 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) ) |
| 23 | 22 | simpld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) ) |
| 24 | 12 | simprd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) || M ) |
| 25 | 20 17 2 23 24 | dvdstrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || M ) |
| 26 | 22 | simprd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) |
| 27 | 15 | simprd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) || N ) |
| 28 | 20 18 3 26 27 | dvdstrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || N ) |
| 29 | dvdsgcd | |- ( ( ( ( K gcd M ) gcd ( K gcd N ) ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( K gcd M ) gcd ( K gcd N ) ) || M /\ ( ( K gcd M ) gcd ( K gcd N ) ) || N ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) ) |
|
| 30 | 20 2 3 29 | syl3anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) gcd ( K gcd N ) ) || M /\ ( ( K gcd M ) gcd ( K gcd N ) ) || N ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) ) |
| 31 | 25 28 30 | mp2and | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) |
| 32 | simpr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( M gcd N ) = 1 ) |
|
| 33 | 31 32 | breqtrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || 1 ) |
| 34 | dvds1 | |- ( ( ( K gcd M ) gcd ( K gcd N ) ) e. NN0 -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || 1 <-> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) ) |
|
| 35 | 19 34 | syl | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || 1 <-> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) ) |
| 36 | 33 35 | mpbid | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) |
| 37 | coprmdvds2 | |- ( ( ( ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ /\ K e. ZZ ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) -> ( ( ( K gcd M ) || K /\ ( K gcd N ) || K ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) ) |
|
| 38 | 17 18 1 36 37 | syl31anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) || K /\ ( K gcd N ) || K ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) ) |
| 39 | 13 16 38 | mp2and | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) |
| 40 | dvdscmul | |- ( ( ( K gcd N ) e. ZZ /\ N e. ZZ /\ ( K gcd M ) e. ZZ ) -> ( ( K gcd N ) || N -> ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) ) ) |
|
| 41 | 18 3 17 40 | syl3anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd N ) || N -> ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) ) ) |
| 42 | dvdsmulc | |- ( ( ( K gcd M ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) || M -> ( ( K gcd M ) x. N ) || ( M x. N ) ) ) |
|
| 43 | 17 2 3 42 | syl3anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) || M -> ( ( K gcd M ) x. N ) || ( M x. N ) ) ) |
| 44 | 17 18 | zmulcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ ) |
| 45 | 17 3 | zmulcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. N ) e. ZZ ) |
| 46 | dvdstr | |- ( ( ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ /\ ( ( K gcd M ) x. N ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) /\ ( ( K gcd M ) x. N ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
|
| 47 | 44 45 4 46 | syl3anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) /\ ( ( K gcd M ) x. N ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
| 48 | 41 43 47 | syl2and | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd N ) || N /\ ( K gcd M ) || M ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
| 49 | 27 24 48 | mp2and | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) |
| 50 | dvdsgcd | |- ( ( ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ /\ K e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || K /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) |
|
| 51 | 44 1 4 50 | syl3anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || K /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) |
| 52 | 39 49 51 | mp2and | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) |
| 53 | dvdseq | |- ( ( ( ( K gcd ( M x. N ) ) e. NN0 /\ ( ( K gcd M ) x. ( K gcd N ) ) e. NN0 ) /\ ( ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) ) |
|
| 54 | 5 8 10 52 53 | syl22anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) ) |