This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divides relation is transitive. Theorem 1.1(b) in ApostolNT p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdstr | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ M || N ) -> K || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ /\ M e. ZZ ) ) |
|
| 2 | 3simpc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 3 | 3simpb | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ /\ N e. ZZ ) ) |
|
| 4 | zmulcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
|
| 5 | 4 | adantl | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
| 6 | oveq2 | |- ( ( x x. K ) = M -> ( y x. ( x x. K ) ) = ( y x. M ) ) |
|
| 7 | 6 | adantr | |- ( ( ( x x. K ) = M /\ ( y x. M ) = N ) -> ( y x. ( x x. K ) ) = ( y x. M ) ) |
| 8 | eqeq2 | |- ( ( y x. M ) = N -> ( ( y x. ( x x. K ) ) = ( y x. M ) <-> ( y x. ( x x. K ) ) = N ) ) |
|
| 9 | 8 | adantl | |- ( ( ( x x. K ) = M /\ ( y x. M ) = N ) -> ( ( y x. ( x x. K ) ) = ( y x. M ) <-> ( y x. ( x x. K ) ) = N ) ) |
| 10 | 7 9 | mpbid | |- ( ( ( x x. K ) = M /\ ( y x. M ) = N ) -> ( y x. ( x x. K ) ) = N ) |
| 11 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 12 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 13 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 14 | mulass | |- ( ( x e. CC /\ y e. CC /\ K e. CC ) -> ( ( x x. y ) x. K ) = ( x x. ( y x. K ) ) ) |
|
| 15 | mul12 | |- ( ( x e. CC /\ y e. CC /\ K e. CC ) -> ( x x. ( y x. K ) ) = ( y x. ( x x. K ) ) ) |
|
| 16 | 14 15 | eqtrd | |- ( ( x e. CC /\ y e. CC /\ K e. CC ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 17 | 11 12 13 16 | syl3an | |- ( ( x e. ZZ /\ y e. ZZ /\ K e. ZZ ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 18 | 17 | 3comr | |- ( ( K e. ZZ /\ x e. ZZ /\ y e. ZZ ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 19 | 18 | 3expb | |- ( ( K e. ZZ /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 20 | 19 | 3ad2antl1 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 21 | 20 | eqeq1d | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. y ) x. K ) = N <-> ( y x. ( x x. K ) ) = N ) ) |
| 22 | 10 21 | imbitrrid | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. K ) = M /\ ( y x. M ) = N ) -> ( ( x x. y ) x. K ) = N ) ) |
| 23 | 1 2 3 5 22 | dvds2lem | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ M || N ) -> K || N ) ) |