This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvaddf.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvaddf.f | |- ( ph -> F : X --> CC ) |
||
| dvaddf.g | |- ( ph -> G : X --> CC ) |
||
| dvaddf.df | |- ( ph -> dom ( S _D F ) = X ) |
||
| dvaddf.dg | |- ( ph -> dom ( S _D G ) = X ) |
||
| Assertion | dvmulf | |- ( ph -> ( S _D ( F oF x. G ) ) = ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvaddf.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvaddf.g | |- ( ph -> G : X --> CC ) |
|
| 4 | dvaddf.df | |- ( ph -> dom ( S _D F ) = X ) |
|
| 5 | dvaddf.dg | |- ( ph -> dom ( S _D G ) = X ) |
|
| 6 | 2 | adantr | |- ( ( ph /\ x e. X ) -> F : X --> CC ) |
| 7 | dvbsss | |- dom ( S _D F ) C_ S |
|
| 8 | 4 7 | eqsstrrdi | |- ( ph -> X C_ S ) |
| 9 | 8 | adantr | |- ( ( ph /\ x e. X ) -> X C_ S ) |
| 10 | 3 | adantr | |- ( ( ph /\ x e. X ) -> G : X --> CC ) |
| 11 | 1 | adantr | |- ( ( ph /\ x e. X ) -> S e. { RR , CC } ) |
| 12 | 4 | eleq2d | |- ( ph -> ( x e. dom ( S _D F ) <-> x e. X ) ) |
| 13 | 12 | biimpar | |- ( ( ph /\ x e. X ) -> x e. dom ( S _D F ) ) |
| 14 | 5 | eleq2d | |- ( ph -> ( x e. dom ( S _D G ) <-> x e. X ) ) |
| 15 | 14 | biimpar | |- ( ( ph /\ x e. X ) -> x e. dom ( S _D G ) ) |
| 16 | 6 9 10 9 11 13 15 | dvmul | |- ( ( ph /\ x e. X ) -> ( ( S _D ( F oF x. G ) ) ` x ) = ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
| 17 | 16 | mpteq2dva | |- ( ph -> ( x e. X |-> ( ( S _D ( F oF x. G ) ) ` x ) ) = ( x e. X |-> ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) ) |
| 18 | dvfg | |- ( S e. { RR , CC } -> ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC ) |
|
| 19 | 1 18 | syl | |- ( ph -> ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC ) |
| 20 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 21 | 1 20 | syl | |- ( ph -> S C_ CC ) |
| 22 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 23 | 22 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
| 24 | 1 8 | ssexd | |- ( ph -> X e. _V ) |
| 25 | inidm | |- ( X i^i X ) = X |
|
| 26 | 23 2 3 24 24 25 | off | |- ( ph -> ( F oF x. G ) : X --> CC ) |
| 27 | 21 26 8 | dvbss | |- ( ph -> dom ( S _D ( F oF x. G ) ) C_ X ) |
| 28 | 21 | adantr | |- ( ( ph /\ x e. X ) -> S C_ CC ) |
| 29 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 30 | 1 29 | syl | |- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 31 | 30 | adantr | |- ( ( ph /\ x e. X ) -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 32 | ffun | |- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
|
| 33 | funfvbrb | |- ( Fun ( S _D F ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
|
| 34 | 31 32 33 | 3syl | |- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
| 35 | 13 34 | mpbid | |- ( ( ph /\ x e. X ) -> x ( S _D F ) ( ( S _D F ) ` x ) ) |
| 36 | dvfg | |- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
|
| 37 | 1 36 | syl | |- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 38 | 37 | adantr | |- ( ( ph /\ x e. X ) -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 39 | ffun | |- ( ( S _D G ) : dom ( S _D G ) --> CC -> Fun ( S _D G ) ) |
|
| 40 | funfvbrb | |- ( Fun ( S _D G ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
|
| 41 | 38 39 40 | 3syl | |- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
| 42 | 15 41 | mpbid | |- ( ( ph /\ x e. X ) -> x ( S _D G ) ( ( S _D G ) ` x ) ) |
| 43 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 44 | 6 9 10 9 28 35 42 43 | dvmulbr | |- ( ( ph /\ x e. X ) -> x ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
| 45 | reldv | |- Rel ( S _D ( F oF x. G ) ) |
|
| 46 | 45 | releldmi | |- ( x ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) -> x e. dom ( S _D ( F oF x. G ) ) ) |
| 47 | 44 46 | syl | |- ( ( ph /\ x e. X ) -> x e. dom ( S _D ( F oF x. G ) ) ) |
| 48 | 27 47 | eqelssd | |- ( ph -> dom ( S _D ( F oF x. G ) ) = X ) |
| 49 | 48 | feq2d | |- ( ph -> ( ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC <-> ( S _D ( F oF x. G ) ) : X --> CC ) ) |
| 50 | 19 49 | mpbid | |- ( ph -> ( S _D ( F oF x. G ) ) : X --> CC ) |
| 51 | 50 | feqmptd | |- ( ph -> ( S _D ( F oF x. G ) ) = ( x e. X |-> ( ( S _D ( F oF x. G ) ) ` x ) ) ) |
| 52 | ovexd | |- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. ( G ` x ) ) e. _V ) |
|
| 53 | ovexd | |- ( ( ph /\ x e. X ) -> ( ( ( S _D G ) ` x ) x. ( F ` x ) ) e. _V ) |
|
| 54 | fvexd | |- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. _V ) |
|
| 55 | fvexd | |- ( ( ph /\ x e. X ) -> ( G ` x ) e. _V ) |
|
| 56 | 4 | feq2d | |- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
| 57 | 30 56 | mpbid | |- ( ph -> ( S _D F ) : X --> CC ) |
| 58 | 57 | feqmptd | |- ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
| 59 | 3 | feqmptd | |- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
| 60 | 24 54 55 58 59 | offval2 | |- ( ph -> ( ( S _D F ) oF x. G ) = ( x e. X |-> ( ( ( S _D F ) ` x ) x. ( G ` x ) ) ) ) |
| 61 | fvexd | |- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) e. _V ) |
|
| 62 | fvexd | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. _V ) |
|
| 63 | 5 | feq2d | |- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
| 64 | 37 63 | mpbid | |- ( ph -> ( S _D G ) : X --> CC ) |
| 65 | 64 | feqmptd | |- ( ph -> ( S _D G ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
| 66 | 2 | feqmptd | |- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
| 67 | 24 61 62 65 66 | offval2 | |- ( ph -> ( ( S _D G ) oF x. F ) = ( x e. X |-> ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
| 68 | 24 52 53 60 67 | offval2 | |- ( ph -> ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) = ( x e. X |-> ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) ) |
| 69 | 17 51 68 | 3eqtr4d | |- ( ph -> ( S _D ( F oF x. G ) ) = ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) ) |