This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvconst | |- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6g | |- ( A e. CC -> ( CC X. { A } ) : CC --> CC ) |
|
| 2 | simpr2 | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> z e. CC ) |
|
| 3 | fvconst2g | |- ( ( A e. CC /\ z e. CC ) -> ( ( CC X. { A } ) ` z ) = A ) |
|
| 4 | 2 3 | syldan | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( CC X. { A } ) ` z ) = A ) |
| 5 | fvconst2g | |- ( ( A e. CC /\ x e. CC ) -> ( ( CC X. { A } ) ` x ) = A ) |
|
| 6 | 5 | 3ad2antr1 | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( CC X. { A } ) ` x ) = A ) |
| 7 | 4 6 | oveq12d | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( CC X. { A } ) ` z ) - ( ( CC X. { A } ) ` x ) ) = ( A - A ) ) |
| 8 | subid | |- ( A e. CC -> ( A - A ) = 0 ) |
|
| 9 | 8 | adantr | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( A - A ) = 0 ) |
| 10 | 7 9 | eqtrd | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( CC X. { A } ) ` z ) - ( ( CC X. { A } ) ` x ) ) = 0 ) |
| 11 | 10 | oveq1d | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( ( CC X. { A } ) ` z ) - ( ( CC X. { A } ) ` x ) ) / ( z - x ) ) = ( 0 / ( z - x ) ) ) |
| 12 | simpr1 | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> x e. CC ) |
|
| 13 | 2 12 | subcld | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( z - x ) e. CC ) |
| 14 | simpr3 | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> z =/= x ) |
|
| 15 | 2 12 14 | subne0d | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( z - x ) =/= 0 ) |
| 16 | 13 15 | div0d | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( 0 / ( z - x ) ) = 0 ) |
| 17 | 11 16 | eqtrd | |- ( ( A e. CC /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( ( CC X. { A } ) ` z ) - ( ( CC X. { A } ) ` x ) ) / ( z - x ) ) = 0 ) |
| 18 | 0cn | |- 0 e. CC |
|
| 19 | 1 17 18 | dvidlem | |- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |