This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation of curry with uncurry. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uncfval.g | |- F = ( <" C D E "> uncurryF G ) |
|
| uncfval.c | |- ( ph -> D e. Cat ) |
||
| uncfval.d | |- ( ph -> E e. Cat ) |
||
| uncfval.f | |- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
||
| Assertion | curfuncf | |- ( ph -> ( <. C , D >. curryF F ) = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfval.g | |- F = ( <" C D E "> uncurryF G ) |
|
| 2 | uncfval.c | |- ( ph -> D e. Cat ) |
|
| 3 | uncfval.d | |- ( ph -> E e. Cat ) |
|
| 4 | uncfval.f | |- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
|
| 5 | 2 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> D e. Cat ) |
| 6 | 3 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> E e. Cat ) |
| 7 | 4 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
| 8 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 9 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 10 | simplr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
|
| 11 | simpr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> y e. ( Base ` D ) ) |
|
| 12 | 1 5 6 7 8 9 10 11 | uncf1 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( x ( 1st ` F ) y ) = ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) |
| 13 | 12 | mpteq2dva | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) = ( y e. ( Base ` D ) |-> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) |
| 14 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 15 | relfunc | |- Rel ( D Func E ) |
|
| 16 | eqid | |- ( D FuncCat E ) = ( D FuncCat E ) |
|
| 17 | 16 | fucbas | |- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
| 18 | relfunc | |- Rel ( C Func ( D FuncCat E ) ) |
|
| 19 | 1st2ndbr | |- ( ( Rel ( C Func ( D FuncCat E ) ) /\ G e. ( C Func ( D FuncCat E ) ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
|
| 20 | 18 4 19 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
| 21 | 8 17 20 | funcf1 | |- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( D Func E ) ) |
| 22 | 21 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
| 23 | 1st2ndbr | |- ( ( Rel ( D Func E ) /\ ( ( 1st ` G ) ` x ) e. ( D Func E ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
|
| 24 | 15 22 23 | sylancr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
| 25 | 9 14 24 | funcf1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) |
| 26 | 25 | feqmptd | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) = ( y e. ( Base ` D ) |-> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) |
| 27 | 13 26 | eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) = ( 1st ` ( ( 1st ` G ) ` x ) ) ) |
| 28 | 2 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> D e. Cat ) |
| 29 | 3 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> E e. Cat ) |
| 30 | 4 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
| 31 | simpllr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> x e. ( Base ` C ) ) |
|
| 32 | simplrl | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> y e. ( Base ` D ) ) |
|
| 33 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 34 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 35 | simprr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> z e. ( Base ` D ) ) |
|
| 36 | 35 | adantr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> z e. ( Base ` D ) ) |
| 37 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 38 | funcrcl | |- ( G e. ( C Func ( D FuncCat E ) ) -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
|
| 39 | 4 38 | syl | |- ( ph -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
| 40 | 39 | simpld | |- ( ph -> C e. Cat ) |
| 41 | 40 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> C e. Cat ) |
| 42 | 8 33 37 41 31 | catidcl | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 43 | simpr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> g e. ( y ( Hom ` D ) z ) ) |
|
| 44 | 1 28 29 30 8 9 31 32 33 34 31 36 42 43 | uncf2 | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) = ( ( ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) ) |
| 45 | eqid | |- ( Id ` ( D FuncCat E ) ) = ( Id ` ( D FuncCat E ) ) |
|
| 46 | 20 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
| 47 | 8 37 45 46 31 | funcid | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` ( D FuncCat E ) ) ` ( ( 1st ` G ) ` x ) ) ) |
| 48 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 49 | 22 | ad2antrr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
| 50 | 16 45 48 49 | fucid | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` ( D FuncCat E ) ) ` ( ( 1st ` G ) ` x ) ) = ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ) |
| 51 | 47 50 | eqtrd | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ) |
| 52 | 51 | fveq1d | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) ` z ) = ( ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ` z ) ) |
| 53 | 25 | ad2antrr | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) |
| 54 | fvco3 | |- ( ( ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) /\ z e. ( Base ` D ) ) -> ( ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ` z ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
|
| 55 | 53 36 54 | syl2anc | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ` z ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
| 56 | 52 55 | eqtrd | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) ` z ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
| 57 | 56 | oveq1d | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) = ( ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) ) |
| 58 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 59 | 53 32 | ffvelcdmd | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) e. ( Base ` E ) ) |
| 60 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 61 | 53 36 | ffvelcdmd | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) e. ( Base ` E ) ) |
| 62 | 24 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
| 63 | simprl | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
|
| 64 | 9 34 58 62 63 35 | funcf2 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) : ( y ( Hom ` D ) z ) --> ( ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
| 65 | 64 | ffvelcdmda | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) e. ( ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
| 66 | 14 58 48 29 59 60 61 65 | catlid | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) = ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) |
| 67 | 44 57 66 | 3eqtrd | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) = ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) |
| 68 | 67 | mpteq2dva | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) ) |
| 69 | 64 | feqmptd | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) ) |
| 70 | 68 69 | eqtr4d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) |
| 71 | 70 | 3impb | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) /\ z e. ( Base ` D ) ) -> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) |
| 72 | 71 | mpoeq3dva | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) ) |
| 73 | 9 24 | funcfn2 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 2nd ` ( ( 1st ` G ) ` x ) ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 74 | fnov | |- ( ( 2nd ` ( ( 1st ` G ) ` x ) ) Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> ( 2nd ` ( ( 1st ` G ) ` x ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) ) |
|
| 75 | 73 74 | sylib | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 2nd ` ( ( 1st ` G ) ` x ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) ) |
| 76 | 72 75 | eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) = ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
| 77 | 27 76 | opeq12d | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. = <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ) |
| 78 | 1st2nd | |- ( ( Rel ( D Func E ) /\ ( ( 1st ` G ) ` x ) e. ( D Func E ) ) -> ( ( 1st ` G ) ` x ) = <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ) |
|
| 79 | 15 22 78 | sylancr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) = <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ) |
| 80 | 77 79 | eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. = ( ( 1st ` G ) ` x ) ) |
| 81 | 80 | mpteq2dva | |- ( ph -> ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) = ( x e. ( Base ` C ) |-> ( ( 1st ` G ) ` x ) ) ) |
| 82 | 21 | feqmptd | |- ( ph -> ( 1st ` G ) = ( x e. ( Base ` C ) |-> ( ( 1st ` G ) ` x ) ) ) |
| 83 | 81 82 | eqtr4d | |- ( ph -> ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) = ( 1st ` G ) ) |
| 84 | 2 | ad3antrrr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> D e. Cat ) |
| 85 | 3 | ad3antrrr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> E e. Cat ) |
| 86 | 4 | ad3antrrr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
| 87 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 88 | 87 | ad2antrr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
| 89 | simpr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> z e. ( Base ` D ) ) |
|
| 90 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 91 | 90 | ad2antrr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> y e. ( Base ` C ) ) |
| 92 | simplr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> g e. ( x ( Hom ` C ) y ) ) |
|
| 93 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 94 | 9 34 93 84 89 | catidcl | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( Id ` D ) ` z ) e. ( z ( Hom ` D ) z ) ) |
| 95 | 1 84 85 86 8 9 88 89 33 34 91 89 92 94 | uncf2 | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) = ( ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` ( ( Id ` D ) ` z ) ) ) ) |
| 96 | 22 | adantrr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
| 97 | 96 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
| 98 | 15 97 23 | sylancr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
| 99 | 98 | adantr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
| 100 | 9 93 48 99 89 | funcid | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` ( ( Id ` D ) ` z ) ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
| 101 | 100 | oveq2d | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` ( ( Id ` D ) ` z ) ) ) = ( ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) ) |
| 102 | 9 14 98 | funcf1 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) |
| 103 | 102 | ffvelcdmda | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) e. ( Base ` E ) ) |
| 104 | 21 | ffvelcdmda | |- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` G ) ` y ) e. ( D Func E ) ) |
| 105 | 104 | adantrl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` G ) ` y ) e. ( D Func E ) ) |
| 106 | 105 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( 1st ` G ) ` y ) e. ( D Func E ) ) |
| 107 | 1st2ndbr | |- ( ( Rel ( D Func E ) /\ ( ( 1st ` G ) ` y ) e. ( D Func E ) ) -> ( 1st ` ( ( 1st ` G ) ` y ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` y ) ) ) |
|
| 108 | 15 106 107 | sylancr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( 1st ` G ) ` y ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` y ) ) ) |
| 109 | 9 14 108 | funcf1 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( 1st ` G ) ` y ) ) : ( Base ` D ) --> ( Base ` E ) ) |
| 110 | 109 | ffvelcdmda | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) e. ( Base ` E ) ) |
| 111 | eqid | |- ( D Nat E ) = ( D Nat E ) |
|
| 112 | 16 111 | fuchom | |- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
| 113 | 20 | ad3antrrr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
| 114 | 8 33 112 113 88 91 | funcf2 | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 115 | 114 92 | ffvelcdmd | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 116 | 111 115 | nat1st2nd | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ( D Nat E ) <. ( 1st ` ( ( 1st ` G ) ` y ) ) , ( 2nd ` ( ( 1st ` G ) ` y ) ) >. ) ) |
| 117 | 111 116 9 58 89 | natcl | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) e. ( ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ) |
| 118 | 14 58 48 85 103 60 110 117 | catrid | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) = ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) |
| 119 | 95 101 118 | 3eqtrd | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) = ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) |
| 120 | 119 | mpteq2dva | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( z e. ( Base ` D ) |-> ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) ) |
| 121 | 20 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
| 122 | 8 33 112 121 87 90 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 123 | 122 | ffvelcdmda | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 124 | 111 123 | nat1st2nd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ( D Nat E ) <. ( 1st ` ( ( 1st ` G ) ` y ) ) , ( 2nd ` ( ( 1st ` G ) ` y ) ) >. ) ) |
| 125 | 111 124 9 | natfn | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) Fn ( Base ` D ) ) |
| 126 | dffn5 | |- ( ( ( x ( 2nd ` G ) y ) ` g ) Fn ( Base ` D ) <-> ( ( x ( 2nd ` G ) y ) ` g ) = ( z e. ( Base ` D ) |-> ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) ) |
|
| 127 | 125 126 | sylib | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) = ( z e. ( Base ` D ) |-> ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) ) |
| 128 | 120 127 | eqtr4d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( ( x ( 2nd ` G ) y ) ` g ) ) |
| 129 | 128 | mpteq2dva | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) = ( g e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` G ) y ) ` g ) ) ) |
| 130 | 122 | feqmptd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) = ( g e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` G ) y ) ` g ) ) ) |
| 131 | 129 130 | eqtr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) = ( x ( 2nd ` G ) y ) ) |
| 132 | 131 | 3impb | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) = ( x ( 2nd ` G ) y ) ) |
| 133 | 132 | mpoeq3dva | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` G ) y ) ) ) |
| 134 | 8 20 | funcfn2 | |- ( ph -> ( 2nd ` G ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 135 | fnov | |- ( ( 2nd ` G ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` G ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` G ) y ) ) ) |
|
| 136 | 134 135 | sylib | |- ( ph -> ( 2nd ` G ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` G ) y ) ) ) |
| 137 | 133 136 | eqtr4d | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) = ( 2nd ` G ) ) |
| 138 | 83 137 | opeq12d | |- ( ph -> <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 139 | eqid | |- ( <. C , D >. curryF F ) = ( <. C , D >. curryF F ) |
|
| 140 | 1 2 3 4 | uncfcl | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
| 141 | 139 8 40 2 140 9 34 37 33 93 | curfval | |- ( ph -> ( <. C , D >. curryF F ) = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 142 | 1st2nd | |- ( ( Rel ( C Func ( D FuncCat E ) ) /\ G e. ( C Func ( D FuncCat E ) ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
|
| 143 | 18 4 142 | sylancr | |- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 144 | 138 141 143 | 3eqtr4d | |- ( ph -> ( <. C , D >. curryF F ) = G ) |