This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the uncurry functor on an object. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uncfval.g | |- F = ( <" C D E "> uncurryF G ) |
|
| uncfval.c | |- ( ph -> D e. Cat ) |
||
| uncfval.d | |- ( ph -> E e. Cat ) |
||
| uncfval.f | |- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
||
| uncf1.a | |- A = ( Base ` C ) |
||
| uncf1.b | |- B = ( Base ` D ) |
||
| uncf1.x | |- ( ph -> X e. A ) |
||
| uncf1.y | |- ( ph -> Y e. B ) |
||
| Assertion | uncf1 | |- ( ph -> ( X ( 1st ` F ) Y ) = ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfval.g | |- F = ( <" C D E "> uncurryF G ) |
|
| 2 | uncfval.c | |- ( ph -> D e. Cat ) |
|
| 3 | uncfval.d | |- ( ph -> E e. Cat ) |
|
| 4 | uncfval.f | |- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
|
| 5 | uncf1.a | |- A = ( Base ` C ) |
|
| 6 | uncf1.b | |- B = ( Base ` D ) |
|
| 7 | uncf1.x | |- ( ph -> X e. A ) |
|
| 8 | uncf1.y | |- ( ph -> Y e. B ) |
|
| 9 | 1 2 3 4 | uncfval | |- ( ph -> F = ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( 1st ` F ) = ( 1st ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) ) |
| 11 | 10 | oveqd | |- ( ph -> ( X ( 1st ` F ) Y ) = ( X ( 1st ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) Y ) ) |
| 12 | df-ov | |- ( X ( 1st ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) Y ) = ( ( 1st ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) ` <. X , Y >. ) |
|
| 13 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 14 | 13 5 6 | xpcbas | |- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 15 | eqid | |- ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) = ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) |
|
| 16 | eqid | |- ( ( D FuncCat E ) Xc. D ) = ( ( D FuncCat E ) Xc. D ) |
|
| 17 | funcrcl | |- ( G e. ( C Func ( D FuncCat E ) ) -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
|
| 18 | 4 17 | syl | |- ( ph -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
| 19 | 18 | simpld | |- ( ph -> C e. Cat ) |
| 20 | eqid | |- ( C 1stF D ) = ( C 1stF D ) |
|
| 21 | 13 19 2 20 | 1stfcl | |- ( ph -> ( C 1stF D ) e. ( ( C Xc. D ) Func C ) ) |
| 22 | 21 4 | cofucl | |- ( ph -> ( G o.func ( C 1stF D ) ) e. ( ( C Xc. D ) Func ( D FuncCat E ) ) ) |
| 23 | eqid | |- ( C 2ndF D ) = ( C 2ndF D ) |
|
| 24 | 13 19 2 23 | 2ndfcl | |- ( ph -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 25 | 15 16 22 24 | prfcl | |- ( ph -> ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) e. ( ( C Xc. D ) Func ( ( D FuncCat E ) Xc. D ) ) ) |
| 26 | eqid | |- ( D evalF E ) = ( D evalF E ) |
|
| 27 | eqid | |- ( D FuncCat E ) = ( D FuncCat E ) |
|
| 28 | 26 27 2 3 | evlfcl | |- ( ph -> ( D evalF E ) e. ( ( ( D FuncCat E ) Xc. D ) Func E ) ) |
| 29 | 7 8 | opelxpd | |- ( ph -> <. X , Y >. e. ( A X. B ) ) |
| 30 | 14 25 28 29 | cofu1 | |- ( ph -> ( ( 1st ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) ` <. X , Y >. ) = ( ( 1st ` ( D evalF E ) ) ` ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ) ) |
| 31 | 12 30 | eqtrid | |- ( ph -> ( X ( 1st ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) Y ) = ( ( 1st ` ( D evalF E ) ) ` ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ) ) |
| 32 | eqid | |- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
|
| 33 | 15 14 32 22 24 29 | prf1 | |- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) = <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) >. ) |
| 34 | 14 21 4 29 | cofu1 | |- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) = ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ) ) |
| 35 | 13 14 32 19 2 20 29 | 1stf1 | |- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) = ( 1st ` <. X , Y >. ) ) |
| 36 | op1stg | |- ( ( X e. A /\ Y e. B ) -> ( 1st ` <. X , Y >. ) = X ) |
|
| 37 | 7 8 36 | syl2anc | |- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
| 38 | 35 37 | eqtrd | |- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) = X ) |
| 39 | 38 | fveq2d | |- ( ph -> ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ) = ( ( 1st ` G ) ` X ) ) |
| 40 | 34 39 | eqtrd | |- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) = ( ( 1st ` G ) ` X ) ) |
| 41 | 13 14 32 19 2 23 29 | 2ndf1 | |- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) = ( 2nd ` <. X , Y >. ) ) |
| 42 | op2ndg | |- ( ( X e. A /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
|
| 43 | 7 8 42 | syl2anc | |- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 44 | 41 43 | eqtrd | |- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) = Y ) |
| 45 | 40 44 | opeq12d | |- ( ph -> <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) >. = <. ( ( 1st ` G ) ` X ) , Y >. ) |
| 46 | 33 45 | eqtrd | |- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) = <. ( ( 1st ` G ) ` X ) , Y >. ) |
| 47 | 46 | fveq2d | |- ( ph -> ( ( 1st ` ( D evalF E ) ) ` ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ) = ( ( 1st ` ( D evalF E ) ) ` <. ( ( 1st ` G ) ` X ) , Y >. ) ) |
| 48 | df-ov | |- ( ( ( 1st ` G ) ` X ) ( 1st ` ( D evalF E ) ) Y ) = ( ( 1st ` ( D evalF E ) ) ` <. ( ( 1st ` G ) ` X ) , Y >. ) |
|
| 49 | 47 48 | eqtr4di | |- ( ph -> ( ( 1st ` ( D evalF E ) ) ` ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ) = ( ( ( 1st ` G ) ` X ) ( 1st ` ( D evalF E ) ) Y ) ) |
| 50 | 27 | fucbas | |- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
| 51 | relfunc | |- Rel ( C Func ( D FuncCat E ) ) |
|
| 52 | 1st2ndbr | |- ( ( Rel ( C Func ( D FuncCat E ) ) /\ G e. ( C Func ( D FuncCat E ) ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
|
| 53 | 51 4 52 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
| 54 | 5 50 53 | funcf1 | |- ( ph -> ( 1st ` G ) : A --> ( D Func E ) ) |
| 55 | 54 7 | ffvelcdmd | |- ( ph -> ( ( 1st ` G ) ` X ) e. ( D Func E ) ) |
| 56 | 26 2 3 6 55 8 | evlf1 | |- ( ph -> ( ( ( 1st ` G ) ` X ) ( 1st ` ( D evalF E ) ) Y ) = ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) ) |
| 57 | 49 56 | eqtrd | |- ( ph -> ( ( 1st ` ( D evalF E ) ) ` ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ) = ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) ) |
| 58 | 11 31 57 | 3eqtrd | |- ( ph -> ( X ( 1st ` F ) Y ) = ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) ) |