This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uncurry operation takes a functor F : C --> ( D --> E ) to a functor uncurryF ( F ) : C X. D --> E . (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uncfval.g | |- F = ( <" C D E "> uncurryF G ) |
|
| uncfval.c | |- ( ph -> D e. Cat ) |
||
| uncfval.d | |- ( ph -> E e. Cat ) |
||
| uncfval.f | |- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
||
| Assertion | uncfcl | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfval.g | |- F = ( <" C D E "> uncurryF G ) |
|
| 2 | uncfval.c | |- ( ph -> D e. Cat ) |
|
| 3 | uncfval.d | |- ( ph -> E e. Cat ) |
|
| 4 | uncfval.f | |- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
|
| 5 | 1 2 3 4 | uncfval | |- ( ph -> F = ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) |
| 6 | eqid | |- ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) = ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) |
|
| 7 | eqid | |- ( ( D FuncCat E ) Xc. D ) = ( ( D FuncCat E ) Xc. D ) |
|
| 8 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 9 | funcrcl | |- ( G e. ( C Func ( D FuncCat E ) ) -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
|
| 10 | 4 9 | syl | |- ( ph -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
| 11 | 10 | simpld | |- ( ph -> C e. Cat ) |
| 12 | eqid | |- ( C 1stF D ) = ( C 1stF D ) |
|
| 13 | 8 11 2 12 | 1stfcl | |- ( ph -> ( C 1stF D ) e. ( ( C Xc. D ) Func C ) ) |
| 14 | 13 4 | cofucl | |- ( ph -> ( G o.func ( C 1stF D ) ) e. ( ( C Xc. D ) Func ( D FuncCat E ) ) ) |
| 15 | eqid | |- ( C 2ndF D ) = ( C 2ndF D ) |
|
| 16 | 8 11 2 15 | 2ndfcl | |- ( ph -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 17 | 6 7 14 16 | prfcl | |- ( ph -> ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) e. ( ( C Xc. D ) Func ( ( D FuncCat E ) Xc. D ) ) ) |
| 18 | eqid | |- ( D evalF E ) = ( D evalF E ) |
|
| 19 | eqid | |- ( D FuncCat E ) = ( D FuncCat E ) |
|
| 20 | 18 19 2 3 | evlfcl | |- ( ph -> ( D evalF E ) e. ( ( ( D FuncCat E ) Xc. D ) Func E ) ) |
| 21 | 17 20 | cofucl | |- ( ph -> ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) e. ( ( C Xc. D ) Func E ) ) |
| 22 | 5 21 | eqeltrd | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |