This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uncfval.g | |- F = ( <" C D E "> uncurryF G ) |
|
| uncfval.c | |- ( ph -> D e. Cat ) |
||
| uncfval.d | |- ( ph -> E e. Cat ) |
||
| uncfval.f | |- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
||
| uncf1.a | |- A = ( Base ` C ) |
||
| uncf1.b | |- B = ( Base ` D ) |
||
| uncf1.x | |- ( ph -> X e. A ) |
||
| uncf1.y | |- ( ph -> Y e. B ) |
||
| uncf2.h | |- H = ( Hom ` C ) |
||
| uncf2.j | |- J = ( Hom ` D ) |
||
| uncf2.z | |- ( ph -> Z e. A ) |
||
| uncf2.w | |- ( ph -> W e. B ) |
||
| uncf2.r | |- ( ph -> R e. ( X H Z ) ) |
||
| uncf2.s | |- ( ph -> S e. ( Y J W ) ) |
||
| Assertion | uncf2 | |- ( ph -> ( R ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) S ) = ( ( ( ( X ( 2nd ` G ) Z ) ` R ) ` W ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` W ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Z ) ) ` W ) ) ( ( Y ( 2nd ` ( ( 1st ` G ) ` X ) ) W ) ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfval.g | |- F = ( <" C D E "> uncurryF G ) |
|
| 2 | uncfval.c | |- ( ph -> D e. Cat ) |
|
| 3 | uncfval.d | |- ( ph -> E e. Cat ) |
|
| 4 | uncfval.f | |- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
|
| 5 | uncf1.a | |- A = ( Base ` C ) |
|
| 6 | uncf1.b | |- B = ( Base ` D ) |
|
| 7 | uncf1.x | |- ( ph -> X e. A ) |
|
| 8 | uncf1.y | |- ( ph -> Y e. B ) |
|
| 9 | uncf2.h | |- H = ( Hom ` C ) |
|
| 10 | uncf2.j | |- J = ( Hom ` D ) |
|
| 11 | uncf2.z | |- ( ph -> Z e. A ) |
|
| 12 | uncf2.w | |- ( ph -> W e. B ) |
|
| 13 | uncf2.r | |- ( ph -> R e. ( X H Z ) ) |
|
| 14 | uncf2.s | |- ( ph -> S e. ( Y J W ) ) |
|
| 15 | 1 2 3 4 | uncfval | |- ( ph -> F = ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) |
| 16 | 15 | fveq2d | |- ( ph -> ( 2nd ` F ) = ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) ) |
| 17 | 16 | oveqd | |- ( ph -> ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) = ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) ) |
| 18 | 17 | oveqd | |- ( ph -> ( R ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) S ) = ( R ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) S ) ) |
| 19 | df-ov | |- ( R ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) S ) = ( ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) ` <. R , S >. ) |
|
| 20 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 21 | 20 5 6 | xpcbas | |- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 22 | eqid | |- ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) = ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) |
|
| 23 | eqid | |- ( ( D FuncCat E ) Xc. D ) = ( ( D FuncCat E ) Xc. D ) |
|
| 24 | funcrcl | |- ( G e. ( C Func ( D FuncCat E ) ) -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
|
| 25 | 4 24 | syl | |- ( ph -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
| 26 | 25 | simpld | |- ( ph -> C e. Cat ) |
| 27 | eqid | |- ( C 1stF D ) = ( C 1stF D ) |
|
| 28 | 20 26 2 27 | 1stfcl | |- ( ph -> ( C 1stF D ) e. ( ( C Xc. D ) Func C ) ) |
| 29 | 28 4 | cofucl | |- ( ph -> ( G o.func ( C 1stF D ) ) e. ( ( C Xc. D ) Func ( D FuncCat E ) ) ) |
| 30 | eqid | |- ( C 2ndF D ) = ( C 2ndF D ) |
|
| 31 | 20 26 2 30 | 2ndfcl | |- ( ph -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 32 | 22 23 29 31 | prfcl | |- ( ph -> ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) e. ( ( C Xc. D ) Func ( ( D FuncCat E ) Xc. D ) ) ) |
| 33 | eqid | |- ( D evalF E ) = ( D evalF E ) |
|
| 34 | eqid | |- ( D FuncCat E ) = ( D FuncCat E ) |
|
| 35 | 33 34 2 3 | evlfcl | |- ( ph -> ( D evalF E ) e. ( ( ( D FuncCat E ) Xc. D ) Func E ) ) |
| 36 | 7 8 | opelxpd | |- ( ph -> <. X , Y >. e. ( A X. B ) ) |
| 37 | 11 12 | opelxpd | |- ( ph -> <. Z , W >. e. ( A X. B ) ) |
| 38 | eqid | |- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
|
| 39 | 13 14 | opelxpd | |- ( ph -> <. R , S >. e. ( ( X H Z ) X. ( Y J W ) ) ) |
| 40 | 20 5 6 9 10 7 8 11 12 38 | xpchom2 | |- ( ph -> ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) = ( ( X H Z ) X. ( Y J W ) ) ) |
| 41 | 39 40 | eleqtrrd | |- ( ph -> <. R , S >. e. ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) |
| 42 | 21 32 35 36 37 38 41 | cofu2 | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) ) |
| 43 | 19 42 | eqtrid | |- ( ph -> ( R ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) S ) = ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) ) |
| 44 | 18 43 | eqtrd | |- ( ph -> ( R ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) S ) = ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) ) |
| 45 | 22 21 38 29 31 36 | prf1 | |- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) = <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) >. ) |
| 46 | 21 28 4 36 | cofu1 | |- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) = ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ) ) |
| 47 | 20 21 38 26 2 27 36 | 1stf1 | |- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) = ( 1st ` <. X , Y >. ) ) |
| 48 | op1stg | |- ( ( X e. A /\ Y e. B ) -> ( 1st ` <. X , Y >. ) = X ) |
|
| 49 | 7 8 48 | syl2anc | |- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
| 50 | 47 49 | eqtrd | |- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) = X ) |
| 51 | 50 | fveq2d | |- ( ph -> ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ) = ( ( 1st ` G ) ` X ) ) |
| 52 | 46 51 | eqtrd | |- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) = ( ( 1st ` G ) ` X ) ) |
| 53 | 20 21 38 26 2 30 36 | 2ndf1 | |- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) = ( 2nd ` <. X , Y >. ) ) |
| 54 | op2ndg | |- ( ( X e. A /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
|
| 55 | 7 8 54 | syl2anc | |- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 56 | 53 55 | eqtrd | |- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) = Y ) |
| 57 | 52 56 | opeq12d | |- ( ph -> <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) >. = <. ( ( 1st ` G ) ` X ) , Y >. ) |
| 58 | 45 57 | eqtrd | |- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) = <. ( ( 1st ` G ) ` X ) , Y >. ) |
| 59 | 22 21 38 29 31 37 | prf1 | |- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) = <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. Z , W >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. Z , W >. ) >. ) |
| 60 | 21 28 4 37 | cofu1 | |- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. Z , W >. ) = ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) ) |
| 61 | 20 21 38 26 2 27 37 | 1stf1 | |- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) = ( 1st ` <. Z , W >. ) ) |
| 62 | op1stg | |- ( ( Z e. A /\ W e. B ) -> ( 1st ` <. Z , W >. ) = Z ) |
|
| 63 | 11 12 62 | syl2anc | |- ( ph -> ( 1st ` <. Z , W >. ) = Z ) |
| 64 | 61 63 | eqtrd | |- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) = Z ) |
| 65 | 64 | fveq2d | |- ( ph -> ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) = ( ( 1st ` G ) ` Z ) ) |
| 66 | 60 65 | eqtrd | |- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. Z , W >. ) = ( ( 1st ` G ) ` Z ) ) |
| 67 | 20 21 38 26 2 30 37 | 2ndf1 | |- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. Z , W >. ) = ( 2nd ` <. Z , W >. ) ) |
| 68 | op2ndg | |- ( ( Z e. A /\ W e. B ) -> ( 2nd ` <. Z , W >. ) = W ) |
|
| 69 | 11 12 68 | syl2anc | |- ( ph -> ( 2nd ` <. Z , W >. ) = W ) |
| 70 | 67 69 | eqtrd | |- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. Z , W >. ) = W ) |
| 71 | 66 70 | opeq12d | |- ( ph -> <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. Z , W >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. Z , W >. ) >. = <. ( ( 1st ` G ) ` Z ) , W >. ) |
| 72 | 59 71 | eqtrd | |- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) = <. ( ( 1st ` G ) ` Z ) , W >. ) |
| 73 | 58 72 | oveq12d | |- ( ph -> ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) = ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) ) |
| 74 | 22 21 38 29 31 36 37 41 | prf2 | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) = <. ( ( <. X , Y >. ( 2nd ` ( G o.func ( C 1stF D ) ) ) <. Z , W >. ) ` <. R , S >. ) , ( ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) ` <. R , S >. ) >. ) |
| 75 | 21 28 4 36 37 38 41 | cofu2 | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( G o.func ( C 1stF D ) ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ( 2nd ` G ) ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) ` <. R , S >. ) ) ) |
| 76 | 50 64 | oveq12d | |- ( ph -> ( ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ( 2nd ` G ) ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) = ( X ( 2nd ` G ) Z ) ) |
| 77 | 20 21 38 26 2 27 36 37 | 1stf2 | |- ( ph -> ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) = ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ) |
| 78 | 77 | fveq1d | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ` <. R , S >. ) ) |
| 79 | 41 | fvresd | |- ( ph -> ( ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ` <. R , S >. ) = ( 1st ` <. R , S >. ) ) |
| 80 | op1stg | |- ( ( R e. ( X H Z ) /\ S e. ( Y J W ) ) -> ( 1st ` <. R , S >. ) = R ) |
|
| 81 | 13 14 80 | syl2anc | |- ( ph -> ( 1st ` <. R , S >. ) = R ) |
| 82 | 78 79 81 | 3eqtrd | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) ` <. R , S >. ) = R ) |
| 83 | 76 82 | fveq12d | |- ( ph -> ( ( ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ( 2nd ` G ) ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) ` <. R , S >. ) ) = ( ( X ( 2nd ` G ) Z ) ` R ) ) |
| 84 | 75 83 | eqtrd | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( G o.func ( C 1stF D ) ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( X ( 2nd ` G ) Z ) ` R ) ) |
| 85 | 20 21 38 26 2 30 36 37 | 2ndf2 | |- ( ph -> ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) = ( 2nd |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ) |
| 86 | 85 | fveq1d | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( 2nd |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ` <. R , S >. ) ) |
| 87 | 41 | fvresd | |- ( ph -> ( ( 2nd |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ` <. R , S >. ) = ( 2nd ` <. R , S >. ) ) |
| 88 | op2ndg | |- ( ( R e. ( X H Z ) /\ S e. ( Y J W ) ) -> ( 2nd ` <. R , S >. ) = S ) |
|
| 89 | 13 14 88 | syl2anc | |- ( ph -> ( 2nd ` <. R , S >. ) = S ) |
| 90 | 86 87 89 | 3eqtrd | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) ` <. R , S >. ) = S ) |
| 91 | 84 90 | opeq12d | |- ( ph -> <. ( ( <. X , Y >. ( 2nd ` ( G o.func ( C 1stF D ) ) ) <. Z , W >. ) ` <. R , S >. ) , ( ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) ` <. R , S >. ) >. = <. ( ( X ( 2nd ` G ) Z ) ` R ) , S >. ) |
| 92 | 74 91 | eqtrd | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) = <. ( ( X ( 2nd ` G ) Z ) ` R ) , S >. ) |
| 93 | 73 92 | fveq12d | |- ( ph -> ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) = ( ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) ` <. ( ( X ( 2nd ` G ) Z ) ` R ) , S >. ) ) |
| 94 | df-ov | |- ( ( ( X ( 2nd ` G ) Z ) ` R ) ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) S ) = ( ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) ` <. ( ( X ( 2nd ` G ) Z ) ` R ) , S >. ) |
|
| 95 | 93 94 | eqtr4di | |- ( ph -> ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) = ( ( ( X ( 2nd ` G ) Z ) ` R ) ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) S ) ) |
| 96 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 97 | eqid | |- ( D Nat E ) = ( D Nat E ) |
|
| 98 | 34 | fucbas | |- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
| 99 | relfunc | |- Rel ( C Func ( D FuncCat E ) ) |
|
| 100 | 1st2ndbr | |- ( ( Rel ( C Func ( D FuncCat E ) ) /\ G e. ( C Func ( D FuncCat E ) ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
|
| 101 | 99 4 100 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
| 102 | 5 98 101 | funcf1 | |- ( ph -> ( 1st ` G ) : A --> ( D Func E ) ) |
| 103 | 102 7 | ffvelcdmd | |- ( ph -> ( ( 1st ` G ) ` X ) e. ( D Func E ) ) |
| 104 | 102 11 | ffvelcdmd | |- ( ph -> ( ( 1st ` G ) ` Z ) e. ( D Func E ) ) |
| 105 | eqid | |- ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) = ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) |
|
| 106 | 34 97 | fuchom | |- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
| 107 | 5 9 106 101 7 11 | funcf2 | |- ( ph -> ( X ( 2nd ` G ) Z ) : ( X H Z ) --> ( ( ( 1st ` G ) ` X ) ( D Nat E ) ( ( 1st ` G ) ` Z ) ) ) |
| 108 | 107 13 | ffvelcdmd | |- ( ph -> ( ( X ( 2nd ` G ) Z ) ` R ) e. ( ( ( 1st ` G ) ` X ) ( D Nat E ) ( ( 1st ` G ) ` Z ) ) ) |
| 109 | 33 2 3 6 10 96 97 103 104 8 12 105 108 14 | evlf2val | |- ( ph -> ( ( ( X ( 2nd ` G ) Z ) ` R ) ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) S ) = ( ( ( ( X ( 2nd ` G ) Z ) ` R ) ` W ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` W ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Z ) ) ` W ) ) ( ( Y ( 2nd ` ( ( 1st ` G ) ` X ) ) W ) ` S ) ) ) |
| 110 | 44 95 109 | 3eqtrd | |- ( ph -> ( R ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) S ) = ( ( ( ( X ( 2nd ` G ) Z ) ` R ) ` W ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` W ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Z ) ) ` W ) ) ( ( Y ( 2nd ` ( ( 1st ` G ) ` X ) ) W ) ` S ) ) ) |