This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natfval.1 | |- N = ( C Nat D ) |
|
| natfval.b | |- B = ( Base ` C ) |
||
| natfval.h | |- H = ( Hom ` C ) |
||
| natfval.j | |- J = ( Hom ` D ) |
||
| natfval.o | |- .x. = ( comp ` D ) |
||
| isnat2.f | |- ( ph -> F e. ( C Func D ) ) |
||
| isnat2.g | |- ( ph -> G e. ( C Func D ) ) |
||
| Assertion | isnat2 | |- ( ph -> ( A e. ( F N G ) <-> ( A e. X_ x e. B ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. .x. ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` h ) ) = ( ( ( x ( 2nd ` G ) y ) ` h ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` G ) ` y ) ) ( A ` x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natfval.1 | |- N = ( C Nat D ) |
|
| 2 | natfval.b | |- B = ( Base ` C ) |
|
| 3 | natfval.h | |- H = ( Hom ` C ) |
|
| 4 | natfval.j | |- J = ( Hom ` D ) |
|
| 5 | natfval.o | |- .x. = ( comp ` D ) |
|
| 6 | isnat2.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 7 | isnat2.g | |- ( ph -> G e. ( C Func D ) ) |
|
| 8 | relfunc | |- Rel ( C Func D ) |
|
| 9 | 1st2nd | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 10 | 8 6 9 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 11 | 1st2nd | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
|
| 12 | 8 7 11 | sylancr | |- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 13 | 10 12 | oveq12d | |- ( ph -> ( F N G ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 14 | 13 | eleq2d | |- ( ph -> ( A e. ( F N G ) <-> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) ) |
| 15 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 16 | 8 6 15 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 17 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 18 | 8 7 17 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 19 | 1 2 3 4 5 16 18 | isnat | |- ( ph -> ( A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) <-> ( A e. X_ x e. B ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. .x. ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` h ) ) = ( ( ( x ( 2nd ` G ) y ) ` h ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` G ) ` y ) ) ( A ` x ) ) ) ) ) |
| 20 | 14 19 | bitrd | |- ( ph -> ( A e. ( F N G ) <-> ( A e. X_ x e. B ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. .x. ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` h ) ) = ( ( ( x ( 2nd ` G ) y ) ` h ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` G ) ` y ) ) ( A ` x ) ) ) ) ) |