This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse to the canonical bijection from ( RR X. RR ) to CC from cnref1o . (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnrecnv.1 | |- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
|
| Assertion | cnrecnv | |- `' F = ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrecnv.1 | |- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
|
| 2 | 1 | cnref1o | |- F : ( RR X. RR ) -1-1-onto-> CC |
| 3 | f1ocnv | |- ( F : ( RR X. RR ) -1-1-onto-> CC -> `' F : CC -1-1-onto-> ( RR X. RR ) ) |
|
| 4 | f1of | |- ( `' F : CC -1-1-onto-> ( RR X. RR ) -> `' F : CC --> ( RR X. RR ) ) |
|
| 5 | 2 3 4 | mp2b | |- `' F : CC --> ( RR X. RR ) |
| 6 | 5 | a1i | |- ( T. -> `' F : CC --> ( RR X. RR ) ) |
| 7 | 6 | feqmptd | |- ( T. -> `' F = ( z e. CC |-> ( `' F ` z ) ) ) |
| 8 | 7 | mptru | |- `' F = ( z e. CC |-> ( `' F ` z ) ) |
| 9 | df-ov | |- ( ( Re ` z ) F ( Im ` z ) ) = ( F ` <. ( Re ` z ) , ( Im ` z ) >. ) |
|
| 10 | recl | |- ( z e. CC -> ( Re ` z ) e. RR ) |
|
| 11 | imcl | |- ( z e. CC -> ( Im ` z ) e. RR ) |
|
| 12 | oveq1 | |- ( x = ( Re ` z ) -> ( x + ( _i x. y ) ) = ( ( Re ` z ) + ( _i x. y ) ) ) |
|
| 13 | oveq2 | |- ( y = ( Im ` z ) -> ( _i x. y ) = ( _i x. ( Im ` z ) ) ) |
|
| 14 | 13 | oveq2d | |- ( y = ( Im ` z ) -> ( ( Re ` z ) + ( _i x. y ) ) = ( ( Re ` z ) + ( _i x. ( Im ` z ) ) ) ) |
| 15 | ovex | |- ( ( Re ` z ) + ( _i x. ( Im ` z ) ) ) e. _V |
|
| 16 | 12 14 1 15 | ovmpo | |- ( ( ( Re ` z ) e. RR /\ ( Im ` z ) e. RR ) -> ( ( Re ` z ) F ( Im ` z ) ) = ( ( Re ` z ) + ( _i x. ( Im ` z ) ) ) ) |
| 17 | 10 11 16 | syl2anc | |- ( z e. CC -> ( ( Re ` z ) F ( Im ` z ) ) = ( ( Re ` z ) + ( _i x. ( Im ` z ) ) ) ) |
| 18 | 9 17 | eqtr3id | |- ( z e. CC -> ( F ` <. ( Re ` z ) , ( Im ` z ) >. ) = ( ( Re ` z ) + ( _i x. ( Im ` z ) ) ) ) |
| 19 | replim | |- ( z e. CC -> z = ( ( Re ` z ) + ( _i x. ( Im ` z ) ) ) ) |
|
| 20 | 18 19 | eqtr4d | |- ( z e. CC -> ( F ` <. ( Re ` z ) , ( Im ` z ) >. ) = z ) |
| 21 | 20 | fveq2d | |- ( z e. CC -> ( `' F ` ( F ` <. ( Re ` z ) , ( Im ` z ) >. ) ) = ( `' F ` z ) ) |
| 22 | 10 11 | opelxpd | |- ( z e. CC -> <. ( Re ` z ) , ( Im ` z ) >. e. ( RR X. RR ) ) |
| 23 | f1ocnvfv1 | |- ( ( F : ( RR X. RR ) -1-1-onto-> CC /\ <. ( Re ` z ) , ( Im ` z ) >. e. ( RR X. RR ) ) -> ( `' F ` ( F ` <. ( Re ` z ) , ( Im ` z ) >. ) ) = <. ( Re ` z ) , ( Im ` z ) >. ) |
|
| 24 | 2 22 23 | sylancr | |- ( z e. CC -> ( `' F ` ( F ` <. ( Re ` z ) , ( Im ` z ) >. ) ) = <. ( Re ` z ) , ( Im ` z ) >. ) |
| 25 | 21 24 | eqtr3d | |- ( z e. CC -> ( `' F ` z ) = <. ( Re ` z ) , ( Im ` z ) >. ) |
| 26 | 25 | mpteq2ia | |- ( z e. CC |-> ( `' F ` z ) ) = ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) |
| 27 | 8 26 | eqtri | |- `' F = ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) |