This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical bijection from ( RR X. RR ) to CC described in cnref1o is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if ( RR X. RR ) is metrized with the l2 norm.) (Contributed by Mario Carneiro, 25-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnrehmeo.1 | |- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
|
| cnrehmeo.2 | |- J = ( topGen ` ran (,) ) |
||
| cnrehmeo.3 | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | cnrehmeo | |- F e. ( ( J tX J ) Homeo K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrehmeo.1 | |- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
|
| 2 | cnrehmeo.2 | |- J = ( topGen ` ran (,) ) |
|
| 3 | cnrehmeo.3 | |- K = ( TopOpen ` CCfld ) |
|
| 4 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 5 | 2 4 | eqeltri | |- J e. ( TopOn ` RR ) |
| 6 | 5 | a1i | |- ( T. -> J e. ( TopOn ` RR ) ) |
| 7 | 3 | cnfldtop | |- K e. Top |
| 8 | cnrest2r | |- ( K e. Top -> ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) ) |
|
| 9 | 7 8 | mp1i | |- ( T. -> ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) ) |
| 10 | 6 6 | cnmpt1st | |- ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn J ) ) |
| 11 | 3 | tgioo2 | |- ( topGen ` ran (,) ) = ( K |`t RR ) |
| 12 | 2 11 | eqtri | |- J = ( K |`t RR ) |
| 13 | 12 | oveq2i | |- ( ( J tX J ) Cn J ) = ( ( J tX J ) Cn ( K |`t RR ) ) |
| 14 | 10 13 | eleqtrdi | |- ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn ( K |`t RR ) ) ) |
| 15 | 9 14 | sseldd | |- ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn K ) ) |
| 16 | 3 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 17 | 16 | a1i | |- ( T. -> K e. ( TopOn ` CC ) ) |
| 18 | ax-icn | |- _i e. CC |
|
| 19 | 18 | a1i | |- ( T. -> _i e. CC ) |
| 20 | 6 6 17 19 | cnmpt2c | |- ( T. -> ( x e. RR , y e. RR |-> _i ) e. ( ( J tX J ) Cn K ) ) |
| 21 | 6 6 | cnmpt2nd | |- ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn J ) ) |
| 22 | 21 13 | eleqtrdi | |- ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn ( K |`t RR ) ) ) |
| 23 | 9 22 | sseldd | |- ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn K ) ) |
| 24 | 3 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) |
| 25 | 24 | a1i | |- ( T. -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) ) |
| 26 | oveq12 | |- ( ( u = _i /\ v = y ) -> ( u x. v ) = ( _i x. y ) ) |
|
| 27 | 6 6 20 23 17 17 25 26 | cnmpt22 | |- ( T. -> ( x e. RR , y e. RR |-> ( _i x. y ) ) e. ( ( J tX J ) Cn K ) ) |
| 28 | 3 | addcn | |- + e. ( ( K tX K ) Cn K ) |
| 29 | 28 | a1i | |- ( T. -> + e. ( ( K tX K ) Cn K ) ) |
| 30 | 6 6 15 27 29 | cnmpt22f | |- ( T. -> ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) e. ( ( J tX J ) Cn K ) ) |
| 31 | 1 30 | eqeltrid | |- ( T. -> F e. ( ( J tX J ) Cn K ) ) |
| 32 | 1 | cnrecnv | |- `' F = ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) |
| 33 | ref | |- Re : CC --> RR |
|
| 34 | 33 | a1i | |- ( T. -> Re : CC --> RR ) |
| 35 | 34 | feqmptd | |- ( T. -> Re = ( z e. CC |-> ( Re ` z ) ) ) |
| 36 | recncf | |- Re e. ( CC -cn-> RR ) |
|
| 37 | ssid | |- CC C_ CC |
|
| 38 | ax-resscn | |- RR C_ CC |
|
| 39 | 16 | toponrestid | |- K = ( K |`t CC ) |
| 40 | 3 39 12 | cncfcn | |- ( ( CC C_ CC /\ RR C_ CC ) -> ( CC -cn-> RR ) = ( K Cn J ) ) |
| 41 | 37 38 40 | mp2an | |- ( CC -cn-> RR ) = ( K Cn J ) |
| 42 | 36 41 | eleqtri | |- Re e. ( K Cn J ) |
| 43 | 35 42 | eqeltrrdi | |- ( T. -> ( z e. CC |-> ( Re ` z ) ) e. ( K Cn J ) ) |
| 44 | imf | |- Im : CC --> RR |
|
| 45 | 44 | a1i | |- ( T. -> Im : CC --> RR ) |
| 46 | 45 | feqmptd | |- ( T. -> Im = ( z e. CC |-> ( Im ` z ) ) ) |
| 47 | imcncf | |- Im e. ( CC -cn-> RR ) |
|
| 48 | 47 41 | eleqtri | |- Im e. ( K Cn J ) |
| 49 | 46 48 | eqeltrrdi | |- ( T. -> ( z e. CC |-> ( Im ` z ) ) e. ( K Cn J ) ) |
| 50 | 17 43 49 | cnmpt1t | |- ( T. -> ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) e. ( K Cn ( J tX J ) ) ) |
| 51 | 32 50 | eqeltrid | |- ( T. -> `' F e. ( K Cn ( J tX J ) ) ) |
| 52 | ishmeo | |- ( F e. ( ( J tX J ) Homeo K ) <-> ( F e. ( ( J tX J ) Cn K ) /\ `' F e. ( K Cn ( J tX J ) ) ) ) |
|
| 53 | 31 51 52 | sylanbrc | |- ( T. -> F e. ( ( J tX J ) Homeo K ) ) |
| 54 | 53 | mptru | |- F e. ( ( J tX J ) Homeo K ) |