This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absimle | |- ( A e. CC -> ( abs ` ( Im ` A ) ) <_ ( abs ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negicn | |- -u _i e. CC |
|
| 2 | 1 | a1i | |- ( A e. CC -> -u _i e. CC ) |
| 3 | id | |- ( A e. CC -> A e. CC ) |
|
| 4 | 2 3 | mulcld | |- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 5 | absrele | |- ( ( -u _i x. A ) e. CC -> ( abs ` ( Re ` ( -u _i x. A ) ) ) <_ ( abs ` ( -u _i x. A ) ) ) |
|
| 6 | 4 5 | syl | |- ( A e. CC -> ( abs ` ( Re ` ( -u _i x. A ) ) ) <_ ( abs ` ( -u _i x. A ) ) ) |
| 7 | imre | |- ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) ) |
|
| 8 | 7 | fveq2d | |- ( A e. CC -> ( abs ` ( Im ` A ) ) = ( abs ` ( Re ` ( -u _i x. A ) ) ) ) |
| 9 | absmul | |- ( ( -u _i e. CC /\ A e. CC ) -> ( abs ` ( -u _i x. A ) ) = ( ( abs ` -u _i ) x. ( abs ` A ) ) ) |
|
| 10 | 1 9 | mpan | |- ( A e. CC -> ( abs ` ( -u _i x. A ) ) = ( ( abs ` -u _i ) x. ( abs ` A ) ) ) |
| 11 | ax-icn | |- _i e. CC |
|
| 12 | absneg | |- ( _i e. CC -> ( abs ` -u _i ) = ( abs ` _i ) ) |
|
| 13 | 11 12 | ax-mp | |- ( abs ` -u _i ) = ( abs ` _i ) |
| 14 | absi | |- ( abs ` _i ) = 1 |
|
| 15 | 13 14 | eqtri | |- ( abs ` -u _i ) = 1 |
| 16 | 15 | oveq1i | |- ( ( abs ` -u _i ) x. ( abs ` A ) ) = ( 1 x. ( abs ` A ) ) |
| 17 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 18 | 17 | recnd | |- ( A e. CC -> ( abs ` A ) e. CC ) |
| 19 | 18 | mullidd | |- ( A e. CC -> ( 1 x. ( abs ` A ) ) = ( abs ` A ) ) |
| 20 | 16 19 | eqtrid | |- ( A e. CC -> ( ( abs ` -u _i ) x. ( abs ` A ) ) = ( abs ` A ) ) |
| 21 | 10 20 | eqtr2d | |- ( A e. CC -> ( abs ` A ) = ( abs ` ( -u _i x. A ) ) ) |
| 22 | 6 8 21 | 3brtr4d | |- ( A e. CC -> ( abs ` ( Im ` A ) ) <_ ( abs ` A ) ) |