This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | clsss | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( cls ` J ) ` T ) C_ ( ( cls ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | sstr2 | |- ( T C_ S -> ( S C_ x -> T C_ x ) ) |
|
| 3 | 2 | adantr | |- ( ( T C_ S /\ x e. ( Clsd ` J ) ) -> ( S C_ x -> T C_ x ) ) |
| 4 | 3 | ss2rabdv | |- ( T C_ S -> { x e. ( Clsd ` J ) | S C_ x } C_ { x e. ( Clsd ` J ) | T C_ x } ) |
| 5 | intss | |- ( { x e. ( Clsd ` J ) | S C_ x } C_ { x e. ( Clsd ` J ) | T C_ x } -> |^| { x e. ( Clsd ` J ) | T C_ x } C_ |^| { x e. ( Clsd ` J ) | S C_ x } ) |
|
| 6 | 4 5 | syl | |- ( T C_ S -> |^| { x e. ( Clsd ` J ) | T C_ x } C_ |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 7 | 6 | 3ad2ant3 | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> |^| { x e. ( Clsd ` J ) | T C_ x } C_ |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 8 | simp1 | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> J e. Top ) |
|
| 9 | sstr2 | |- ( T C_ S -> ( S C_ X -> T C_ X ) ) |
|
| 10 | 9 | impcom | |- ( ( S C_ X /\ T C_ S ) -> T C_ X ) |
| 11 | 10 | 3adant1 | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> T C_ X ) |
| 12 | 1 | clsval | |- ( ( J e. Top /\ T C_ X ) -> ( ( cls ` J ) ` T ) = |^| { x e. ( Clsd ` J ) | T C_ x } ) |
| 13 | 8 11 12 | syl2anc | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( cls ` J ) ` T ) = |^| { x e. ( Clsd ` J ) | T C_ x } ) |
| 14 | 1 | clsval | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 15 | 14 | 3adant3 | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 16 | 7 13 15 | 3sstr4d | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( cls ` J ) ` T ) C_ ( ( cls ` J ) ` S ) ) |