This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hausflf.x | |- X = U. J |
|
| Assertion | hausflf2 | |- ( ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ ( ( J fLimf L ) ` F ) =/= (/) ) -> ( ( J fLimf L ) ` F ) ~~ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hausflf.x | |- X = U. J |
|
| 2 | n0 | |- ( ( ( J fLimf L ) ` F ) =/= (/) <-> E. x x e. ( ( J fLimf L ) ` F ) ) |
|
| 3 | 2 | biimpi | |- ( ( ( J fLimf L ) ` F ) =/= (/) -> E. x x e. ( ( J fLimf L ) ` F ) ) |
| 4 | 1 | hausflf | |- ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> E* x x e. ( ( J fLimf L ) ` F ) ) |
| 5 | euen1b | |- ( ( ( J fLimf L ) ` F ) ~~ 1o <-> E! x x e. ( ( J fLimf L ) ` F ) ) |
|
| 6 | df-eu | |- ( E! x x e. ( ( J fLimf L ) ` F ) <-> ( E. x x e. ( ( J fLimf L ) ` F ) /\ E* x x e. ( ( J fLimf L ) ` F ) ) ) |
|
| 7 | 5 6 | sylbbr | |- ( ( E. x x e. ( ( J fLimf L ) ` F ) /\ E* x x e. ( ( J fLimf L ) ` F ) ) -> ( ( J fLimf L ) ` F ) ~~ 1o ) |
| 8 | 3 4 7 | syl2anr | |- ( ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ ( ( J fLimf L ) ` F ) =/= (/) ) -> ( ( J fLimf L ) ` F ) ~~ 1o ) |