This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the continuous extension of a given function F at a point X . (Contributed by Thierry Arnoux, 21-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextf.1 | |- C = U. J |
|
| cnextf.2 | |- B = U. K |
||
| cnextf.3 | |- ( ph -> J e. Top ) |
||
| cnextf.4 | |- ( ph -> K e. Haus ) |
||
| cnextf.5 | |- ( ph -> F : A --> B ) |
||
| cnextf.a | |- ( ph -> A C_ C ) |
||
| cnextf.6 | |- ( ph -> ( ( cls ` J ) ` A ) = C ) |
||
| cnextf.7 | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) |
||
| Assertion | cnextfvval | |- ( ( ph /\ X e. C ) -> ( ( ( J CnExt K ) ` F ) ` X ) = U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextf.1 | |- C = U. J |
|
| 2 | cnextf.2 | |- B = U. K |
|
| 3 | cnextf.3 | |- ( ph -> J e. Top ) |
|
| 4 | cnextf.4 | |- ( ph -> K e. Haus ) |
|
| 5 | cnextf.5 | |- ( ph -> F : A --> B ) |
|
| 6 | cnextf.a | |- ( ph -> A C_ C ) |
|
| 7 | cnextf.6 | |- ( ph -> ( ( cls ` J ) ` A ) = C ) |
|
| 8 | cnextf.7 | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) |
|
| 9 | 3 | adantr | |- ( ( ph /\ X e. C ) -> J e. Top ) |
| 10 | 4 | adantr | |- ( ( ph /\ X e. C ) -> K e. Haus ) |
| 11 | 5 | adantr | |- ( ( ph /\ X e. C ) -> F : A --> B ) |
| 12 | 6 | adantr | |- ( ( ph /\ X e. C ) -> A C_ C ) |
| 13 | 1 2 | cnextfun | |- ( ( ( J e. Top /\ K e. Haus ) /\ ( F : A --> B /\ A C_ C ) ) -> Fun ( ( J CnExt K ) ` F ) ) |
| 14 | 9 10 11 12 13 | syl22anc | |- ( ( ph /\ X e. C ) -> Fun ( ( J CnExt K ) ` F ) ) |
| 15 | 7 | eleq2d | |- ( ph -> ( X e. ( ( cls ` J ) ` A ) <-> X e. C ) ) |
| 16 | 15 | biimpar | |- ( ( ph /\ X e. C ) -> X e. ( ( cls ` J ) ` A ) ) |
| 17 | fvex | |- ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. _V |
|
| 18 | 17 | uniex | |- U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. _V |
| 19 | 18 | snid | |- U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. { U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) } |
| 20 | sneq | |- ( x = X -> { x } = { X } ) |
|
| 21 | 20 | fveq2d | |- ( x = X -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { X } ) ) |
| 22 | 21 | oveq1d | |- ( x = X -> ( ( ( nei ` J ) ` { x } ) |`t A ) = ( ( ( nei ` J ) ` { X } ) |`t A ) ) |
| 23 | 22 | oveq2d | |- ( x = X -> ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ) |
| 24 | 23 | fveq1d | |- ( x = X -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) = ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 25 | 24 | breq1d | |- ( x = X -> ( ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o <-> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o ) ) |
| 26 | 25 | imbi2d | |- ( x = X -> ( ( ph -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) <-> ( ph -> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o ) ) ) |
| 27 | 4 | adantr | |- ( ( ph /\ x e. C ) -> K e. Haus ) |
| 28 | 3 | adantr | |- ( ( ph /\ x e. C ) -> J e. Top ) |
| 29 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` C ) ) |
| 30 | 28 29 | sylib | |- ( ( ph /\ x e. C ) -> J e. ( TopOn ` C ) ) |
| 31 | 6 | adantr | |- ( ( ph /\ x e. C ) -> A C_ C ) |
| 32 | simpr | |- ( ( ph /\ x e. C ) -> x e. C ) |
|
| 33 | 7 | eleq2d | |- ( ph -> ( x e. ( ( cls ` J ) ` A ) <-> x e. C ) ) |
| 34 | 33 | biimpar | |- ( ( ph /\ x e. C ) -> x e. ( ( cls ` J ) ` A ) ) |
| 35 | trnei | |- ( ( J e. ( TopOn ` C ) /\ A C_ C /\ x e. C ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
|
| 36 | 35 | biimpa | |- ( ( ( J e. ( TopOn ` C ) /\ A C_ C /\ x e. C ) /\ x e. ( ( cls ` J ) ` A ) ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 37 | 30 31 32 34 36 | syl31anc | |- ( ( ph /\ x e. C ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 38 | 5 | adantr | |- ( ( ph /\ x e. C ) -> F : A --> B ) |
| 39 | 2 | hausflf2 | |- ( ( ( K e. Haus /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) /\ ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) |
| 40 | 27 37 38 8 39 | syl31anc | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) |
| 41 | 40 | expcom | |- ( x e. C -> ( ph -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) ) |
| 42 | 26 41 | vtoclga | |- ( X e. C -> ( ph -> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o ) ) |
| 43 | 42 | impcom | |- ( ( ph /\ X e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o ) |
| 44 | en1b | |- ( ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o <-> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) } ) |
|
| 45 | 43 44 | sylib | |- ( ( ph /\ X e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) } ) |
| 46 | 19 45 | eleqtrrid | |- ( ( ph /\ X e. C ) -> U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 47 | nfiu1 | |- F/_ x U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
|
| 48 | 47 | nfel2 | |- F/ x <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 49 | nfv | |- F/ x ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
|
| 50 | 48 49 | nfbi | |- F/ x ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 51 | opeq1 | |- ( x = X -> <. x , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. = <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. ) |
|
| 52 | 51 | eleq1d | |- ( x = X -> ( <. x , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 53 | eleq1 | |- ( x = X -> ( x e. ( ( cls ` J ) ` A ) <-> X e. ( ( cls ` J ) ` A ) ) ) |
|
| 54 | 24 | eleq2d | |- ( x = X -> ( U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) <-> U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 55 | 53 54 | anbi12d | |- ( x = X -> ( ( x e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) ) |
| 56 | 52 55 | bibi12d | |- ( x = X -> ( ( <. x , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( x e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) <-> ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) ) ) |
| 57 | opeliunxp | |- ( <. x , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( x e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
|
| 58 | 50 56 57 | vtoclg1f | |- ( X e. C -> ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) ) |
| 59 | 58 | adantl | |- ( ( ph /\ X e. C ) -> ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) ) |
| 60 | 16 46 59 | mpbir2and | |- ( ( ph /\ X e. C ) -> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 61 | df-br | |- ( X ( ( J CnExt K ) ` F ) U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) <-> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. ( ( J CnExt K ) ` F ) ) |
|
| 62 | haustop | |- ( K e. Haus -> K e. Top ) |
|
| 63 | 4 62 | syl | |- ( ph -> K e. Top ) |
| 64 | 63 | adantr | |- ( ( ph /\ X e. C ) -> K e. Top ) |
| 65 | 1 2 | cnextfval | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 66 | 9 64 11 12 65 | syl22anc | |- ( ( ph /\ X e. C ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 67 | 66 | eleq2d | |- ( ( ph /\ X e. C ) -> ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. ( ( J CnExt K ) ` F ) <-> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 68 | 61 67 | bitrid | |- ( ( ph /\ X e. C ) -> ( X ( ( J CnExt K ) ` F ) U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) <-> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 69 | 60 68 | mpbird | |- ( ( ph /\ X e. C ) -> X ( ( J CnExt K ) ` F ) U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 70 | funbrfv | |- ( Fun ( ( J CnExt K ) ` F ) -> ( X ( ( J CnExt K ) ` F ) U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) -> ( ( ( J CnExt K ) ` F ) ` X ) = U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
|
| 71 | 14 69 70 | sylc | |- ( ( ph /\ X e. C ) -> ( ( ( J CnExt K ) ` F ) ` X ) = U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |