This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextf.1 | |- C = U. J |
|
| cnextf.2 | |- B = U. K |
||
| cnextf.3 | |- ( ph -> J e. Top ) |
||
| cnextf.4 | |- ( ph -> K e. Haus ) |
||
| cnextf.5 | |- ( ph -> F : A --> B ) |
||
| cnextf.a | |- ( ph -> A C_ C ) |
||
| cnextf.6 | |- ( ph -> ( ( cls ` J ) ` A ) = C ) |
||
| cnextf.7 | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) |
||
| Assertion | cnextf | |- ( ph -> ( ( J CnExt K ) ` F ) : C --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextf.1 | |- C = U. J |
|
| 2 | cnextf.2 | |- B = U. K |
|
| 3 | cnextf.3 | |- ( ph -> J e. Top ) |
|
| 4 | cnextf.4 | |- ( ph -> K e. Haus ) |
|
| 5 | cnextf.5 | |- ( ph -> F : A --> B ) |
|
| 6 | cnextf.a | |- ( ph -> A C_ C ) |
|
| 7 | cnextf.6 | |- ( ph -> ( ( cls ` J ) ` A ) = C ) |
|
| 8 | cnextf.7 | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) |
|
| 9 | 1 2 | cnextfun | |- ( ( ( J e. Top /\ K e. Haus ) /\ ( F : A --> B /\ A C_ C ) ) -> Fun ( ( J CnExt K ) ` F ) ) |
| 10 | 3 4 5 6 9 | syl22anc | |- ( ph -> Fun ( ( J CnExt K ) ` F ) ) |
| 11 | dfdm3 | |- dom ( ( J CnExt K ) ` F ) = { x | E. y <. x , y >. e. ( ( J CnExt K ) ` F ) } |
|
| 12 | simpl | |- ( ( ph /\ x e. C ) -> ph ) |
|
| 13 | 7 | eleq2d | |- ( ph -> ( x e. ( ( cls ` J ) ` A ) <-> x e. C ) ) |
| 14 | 13 | biimpar | |- ( ( ph /\ x e. C ) -> x e. ( ( cls ` J ) ` A ) ) |
| 15 | n0 | |- ( ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) <-> E. y y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
|
| 16 | 8 15 | sylib | |- ( ( ph /\ x e. C ) -> E. y y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 17 | haustop | |- ( K e. Haus -> K e. Top ) |
|
| 18 | 4 17 | syl | |- ( ph -> K e. Top ) |
| 19 | 1 2 | cnextfval | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 20 | 3 18 5 6 19 | syl22anc | |- ( ph -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 21 | 20 | eleq2d | |- ( ph -> ( <. x , y >. e. ( ( J CnExt K ) ` F ) <-> <. x , y >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 22 | opeliunxp | |- ( <. x , y >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( x e. ( ( cls ` J ) ` A ) /\ y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
|
| 23 | 21 22 | bitrdi | |- ( ph -> ( <. x , y >. e. ( ( J CnExt K ) ` F ) <-> ( x e. ( ( cls ` J ) ` A ) /\ y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 24 | 23 | exbidv | |- ( ph -> ( E. y <. x , y >. e. ( ( J CnExt K ) ` F ) <-> E. y ( x e. ( ( cls ` J ) ` A ) /\ y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 25 | 19.42v | |- ( E. y ( x e. ( ( cls ` J ) ` A ) /\ y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( x e. ( ( cls ` J ) ` A ) /\ E. y y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
|
| 26 | 24 25 | bitrdi | |- ( ph -> ( E. y <. x , y >. e. ( ( J CnExt K ) ` F ) <-> ( x e. ( ( cls ` J ) ` A ) /\ E. y y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 27 | 26 | biimpar | |- ( ( ph /\ ( x e. ( ( cls ` J ) ` A ) /\ E. y y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) -> E. y <. x , y >. e. ( ( J CnExt K ) ` F ) ) |
| 28 | 12 14 16 27 | syl12anc | |- ( ( ph /\ x e. C ) -> E. y <. x , y >. e. ( ( J CnExt K ) ` F ) ) |
| 29 | 26 | simprbda | |- ( ( ph /\ E. y <. x , y >. e. ( ( J CnExt K ) ` F ) ) -> x e. ( ( cls ` J ) ` A ) ) |
| 30 | 13 | adantr | |- ( ( ph /\ E. y <. x , y >. e. ( ( J CnExt K ) ` F ) ) -> ( x e. ( ( cls ` J ) ` A ) <-> x e. C ) ) |
| 31 | 29 30 | mpbid | |- ( ( ph /\ E. y <. x , y >. e. ( ( J CnExt K ) ` F ) ) -> x e. C ) |
| 32 | 28 31 | impbida | |- ( ph -> ( x e. C <-> E. y <. x , y >. e. ( ( J CnExt K ) ` F ) ) ) |
| 33 | 32 | eqabdv | |- ( ph -> C = { x | E. y <. x , y >. e. ( ( J CnExt K ) ` F ) } ) |
| 34 | 11 33 | eqtr4id | |- ( ph -> dom ( ( J CnExt K ) ` F ) = C ) |
| 35 | df-fn | |- ( ( ( J CnExt K ) ` F ) Fn C <-> ( Fun ( ( J CnExt K ) ` F ) /\ dom ( ( J CnExt K ) ` F ) = C ) ) |
|
| 36 | 10 34 35 | sylanbrc | |- ( ph -> ( ( J CnExt K ) ` F ) Fn C ) |
| 37 | 20 | rneqd | |- ( ph -> ran ( ( J CnExt K ) ` F ) = ran U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 38 | rniun | |- ran U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) = U_ x e. ( ( cls ` J ) ` A ) ran ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
|
| 39 | vex | |- x e. _V |
|
| 40 | 39 | snnz | |- { x } =/= (/) |
| 41 | rnxp | |- ( { x } =/= (/) -> ran ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) = ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
|
| 42 | 40 41 | ax-mp | |- ran ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) = ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) |
| 43 | 13 | biimpa | |- ( ( ph /\ x e. ( ( cls ` J ) ` A ) ) -> x e. C ) |
| 44 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` B ) ) |
| 45 | 18 44 | sylib | |- ( ph -> K e. ( TopOn ` B ) ) |
| 46 | 45 | adantr | |- ( ( ph /\ x e. C ) -> K e. ( TopOn ` B ) ) |
| 47 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` C ) ) |
| 48 | 3 47 | sylib | |- ( ph -> J e. ( TopOn ` C ) ) |
| 49 | 48 | adantr | |- ( ( ph /\ x e. C ) -> J e. ( TopOn ` C ) ) |
| 50 | 6 | adantr | |- ( ( ph /\ x e. C ) -> A C_ C ) |
| 51 | simpr | |- ( ( ph /\ x e. C ) -> x e. C ) |
|
| 52 | trnei | |- ( ( J e. ( TopOn ` C ) /\ A C_ C /\ x e. C ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
|
| 53 | 52 | biimpa | |- ( ( ( J e. ( TopOn ` C ) /\ A C_ C /\ x e. C ) /\ x e. ( ( cls ` J ) ` A ) ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 54 | 49 50 51 14 53 | syl31anc | |- ( ( ph /\ x e. C ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 55 | 5 | adantr | |- ( ( ph /\ x e. C ) -> F : A --> B ) |
| 56 | flfelbas | |- ( ( ( K e. ( TopOn ` B ) /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) /\ y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) -> y e. B ) |
|
| 57 | 56 | ex | |- ( ( K e. ( TopOn ` B ) /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) -> ( y e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) -> y e. B ) ) |
| 58 | 57 | ssrdv | |- ( ( K e. ( TopOn ` B ) /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) C_ B ) |
| 59 | 46 54 55 58 | syl3anc | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) C_ B ) |
| 60 | 43 59 | syldan | |- ( ( ph /\ x e. ( ( cls ` J ) ` A ) ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) C_ B ) |
| 61 | 42 60 | eqsstrid | |- ( ( ph /\ x e. ( ( cls ` J ) ` A ) ) -> ran ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) C_ B ) |
| 62 | 61 | ralrimiva | |- ( ph -> A. x e. ( ( cls ` J ) ` A ) ran ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) C_ B ) |
| 63 | iunss | |- ( U_ x e. ( ( cls ` J ) ` A ) ran ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) C_ B <-> A. x e. ( ( cls ` J ) ` A ) ran ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) C_ B ) |
|
| 64 | 62 63 | sylibr | |- ( ph -> U_ x e. ( ( cls ` J ) ` A ) ran ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) C_ B ) |
| 65 | 38 64 | eqsstrid | |- ( ph -> ran U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) C_ B ) |
| 66 | 37 65 | eqsstrd | |- ( ph -> ran ( ( J CnExt K ) ` F ) C_ B ) |
| 67 | df-f | |- ( ( ( J CnExt K ) ` F ) : C --> B <-> ( ( ( J CnExt K ) ` F ) Fn C /\ ran ( ( J CnExt K ) ` F ) C_ B ) ) |
|
| 68 | 36 66 67 | sylanbrc | |- ( ph -> ( ( J CnExt K ) ` F ) : C --> B ) |