This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fgfil | |- ( F e. ( Fil ` X ) -> ( X filGen F ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas | |- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
|
| 2 | elfg | |- ( F e. ( fBas ` X ) -> ( t e. ( X filGen F ) <-> ( t C_ X /\ E. x e. F x C_ t ) ) ) |
|
| 3 | 1 2 | syl | |- ( F e. ( Fil ` X ) -> ( t e. ( X filGen F ) <-> ( t C_ X /\ E. x e. F x C_ t ) ) ) |
| 4 | filss | |- ( ( F e. ( Fil ` X ) /\ ( x e. F /\ t C_ X /\ x C_ t ) ) -> t e. F ) |
|
| 5 | 4 | 3exp2 | |- ( F e. ( Fil ` X ) -> ( x e. F -> ( t C_ X -> ( x C_ t -> t e. F ) ) ) ) |
| 6 | 5 | com34 | |- ( F e. ( Fil ` X ) -> ( x e. F -> ( x C_ t -> ( t C_ X -> t e. F ) ) ) ) |
| 7 | 6 | rexlimdv | |- ( F e. ( Fil ` X ) -> ( E. x e. F x C_ t -> ( t C_ X -> t e. F ) ) ) |
| 8 | 7 | impcomd | |- ( F e. ( Fil ` X ) -> ( ( t C_ X /\ E. x e. F x C_ t ) -> t e. F ) ) |
| 9 | 3 8 | sylbid | |- ( F e. ( Fil ` X ) -> ( t e. ( X filGen F ) -> t e. F ) ) |
| 10 | 9 | ssrdv | |- ( F e. ( Fil ` X ) -> ( X filGen F ) C_ F ) |
| 11 | ssfg | |- ( F e. ( fBas ` X ) -> F C_ ( X filGen F ) ) |
|
| 12 | 1 11 | syl | |- ( F e. ( Fil ` X ) -> F C_ ( X filGen F ) ) |
| 13 | 10 12 | eqssd | |- ( F e. ( Fil ` X ) -> ( X filGen F ) = F ) |