This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimclsi | |- ( S e. F -> ( J fLim F ) C_ ( ( cls ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | flimfil | |- ( x e. ( J fLim F ) -> F e. ( Fil ` U. J ) ) |
| 3 | 2 | ad2antlr | |- ( ( ( S e. F /\ x e. ( J fLim F ) ) /\ y e. ( ( nei ` J ) ` { x } ) ) -> F e. ( Fil ` U. J ) ) |
| 4 | flimnei | |- ( ( x e. ( J fLim F ) /\ y e. ( ( nei ` J ) ` { x } ) ) -> y e. F ) |
|
| 5 | 4 | adantll | |- ( ( ( S e. F /\ x e. ( J fLim F ) ) /\ y e. ( ( nei ` J ) ` { x } ) ) -> y e. F ) |
| 6 | simpll | |- ( ( ( S e. F /\ x e. ( J fLim F ) ) /\ y e. ( ( nei ` J ) ` { x } ) ) -> S e. F ) |
|
| 7 | filinn0 | |- ( ( F e. ( Fil ` U. J ) /\ y e. F /\ S e. F ) -> ( y i^i S ) =/= (/) ) |
|
| 8 | 3 5 6 7 | syl3anc | |- ( ( ( S e. F /\ x e. ( J fLim F ) ) /\ y e. ( ( nei ` J ) ` { x } ) ) -> ( y i^i S ) =/= (/) ) |
| 9 | 8 | ralrimiva | |- ( ( S e. F /\ x e. ( J fLim F ) ) -> A. y e. ( ( nei ` J ) ` { x } ) ( y i^i S ) =/= (/) ) |
| 10 | flimtop | |- ( x e. ( J fLim F ) -> J e. Top ) |
|
| 11 | 10 | adantl | |- ( ( S e. F /\ x e. ( J fLim F ) ) -> J e. Top ) |
| 12 | filelss | |- ( ( F e. ( Fil ` U. J ) /\ S e. F ) -> S C_ U. J ) |
|
| 13 | 12 | ancoms | |- ( ( S e. F /\ F e. ( Fil ` U. J ) ) -> S C_ U. J ) |
| 14 | 2 13 | sylan2 | |- ( ( S e. F /\ x e. ( J fLim F ) ) -> S C_ U. J ) |
| 15 | 1 | flimelbas | |- ( x e. ( J fLim F ) -> x e. U. J ) |
| 16 | 15 | adantl | |- ( ( S e. F /\ x e. ( J fLim F ) ) -> x e. U. J ) |
| 17 | 1 | neindisj2 | |- ( ( J e. Top /\ S C_ U. J /\ x e. U. J ) -> ( x e. ( ( cls ` J ) ` S ) <-> A. y e. ( ( nei ` J ) ` { x } ) ( y i^i S ) =/= (/) ) ) |
| 18 | 11 14 16 17 | syl3anc | |- ( ( S e. F /\ x e. ( J fLim F ) ) -> ( x e. ( ( cls ` J ) ` S ) <-> A. y e. ( ( nei ` J ) ` { x } ) ( y i^i S ) =/= (/) ) ) |
| 19 | 9 18 | mpbird | |- ( ( S e. F /\ x e. ( J fLim F ) ) -> x e. ( ( cls ` J ) ` S ) ) |
| 20 | 19 | ex | |- ( S e. F -> ( x e. ( J fLim F ) -> x e. ( ( cls ` J ) ` S ) ) ) |
| 21 | 20 | ssrdv | |- ( S e. F -> ( J fLim F ) C_ ( ( cls ` J ) ` S ) ) |