This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flfval | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 2 | filtop | |- ( L e. ( Fil ` Y ) -> Y e. L ) |
|
| 3 | elmapg | |- ( ( X e. J /\ Y e. L ) -> ( F e. ( X ^m Y ) <-> F : Y --> X ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) ) -> ( F e. ( X ^m Y ) <-> F : Y --> X ) ) |
| 5 | 4 | biimpar | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) ) /\ F : Y --> X ) -> F e. ( X ^m Y ) ) |
| 6 | flffval | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) ) -> ( J fLimf L ) = ( f e. ( X ^m Y ) |-> ( J fLim ( ( X FilMap f ) ` L ) ) ) ) |
|
| 7 | 6 | fveq1d | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) ) -> ( ( J fLimf L ) ` F ) = ( ( f e. ( X ^m Y ) |-> ( J fLim ( ( X FilMap f ) ` L ) ) ) ` F ) ) |
| 8 | oveq2 | |- ( f = F -> ( X FilMap f ) = ( X FilMap F ) ) |
|
| 9 | 8 | fveq1d | |- ( f = F -> ( ( X FilMap f ) ` L ) = ( ( X FilMap F ) ` L ) ) |
| 10 | 9 | oveq2d | |- ( f = F -> ( J fLim ( ( X FilMap f ) ` L ) ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| 11 | eqid | |- ( f e. ( X ^m Y ) |-> ( J fLim ( ( X FilMap f ) ` L ) ) ) = ( f e. ( X ^m Y ) |-> ( J fLim ( ( X FilMap f ) ` L ) ) ) |
|
| 12 | ovex | |- ( J fLim ( ( X FilMap F ) ` L ) ) e. _V |
|
| 13 | 10 11 12 | fvmpt | |- ( F e. ( X ^m Y ) -> ( ( f e. ( X ^m Y ) |-> ( J fLim ( ( X FilMap f ) ` L ) ) ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| 14 | 7 13 | sylan9eq | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) ) /\ F e. ( X ^m Y ) ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| 15 | 5 14 | syldan | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| 16 | 15 | 3impa | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |