This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c1lip1.a | |- ( ph -> A e. RR ) |
|
| c1lip1.b | |- ( ph -> B e. RR ) |
||
| c1lip1.f | |- ( ph -> F e. ( CC ^pm RR ) ) |
||
| c1lip1.dv | |- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
||
| c1lip1.cn | |- ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
||
| Assertion | c1lip1 | |- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1lip1.a | |- ( ph -> A e. RR ) |
|
| 2 | c1lip1.b | |- ( ph -> B e. RR ) |
|
| 3 | c1lip1.f | |- ( ph -> F e. ( CC ^pm RR ) ) |
|
| 4 | c1lip1.dv | |- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | c1lip1.cn | |- ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 6 | 0re | |- 0 e. RR |
|
| 7 | 6 | ne0ii | |- RR =/= (/) |
| 8 | ral0 | |- A. x e. (/) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) |
|
| 9 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 10 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 11 | icc0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
|
| 12 | 9 10 11 | syl2anc | |- ( ph -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 13 | 12 | biimpar | |- ( ( ph /\ B < A ) -> ( A [,] B ) = (/) ) |
| 14 | 13 | raleqdv | |- ( ( ph /\ B < A ) -> ( A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) <-> A. x e. (/) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 15 | 8 14 | mpbiri | |- ( ( ph /\ B < A ) -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| 16 | 15 | ralrimivw | |- ( ( ph /\ B < A ) -> A. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| 17 | r19.2z | |- ( ( RR =/= (/) /\ A. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
|
| 18 | 7 16 17 | sylancr | |- ( ( ph /\ B < A ) -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| 19 | 1 | adantr | |- ( ( ph /\ A <_ B ) -> A e. RR ) |
| 20 | 2 | adantr | |- ( ( ph /\ A <_ B ) -> B e. RR ) |
| 21 | simpr | |- ( ( ph /\ A <_ B ) -> A <_ B ) |
|
| 22 | 3 | adantr | |- ( ( ph /\ A <_ B ) -> F e. ( CC ^pm RR ) ) |
| 23 | 4 | adantr | |- ( ( ph /\ A <_ B ) -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 24 | 5 | adantr | |- ( ( ph /\ A <_ B ) -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 25 | eqid | |- sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) |
|
| 26 | 19 20 21 22 23 24 25 | c1liplem1 | |- ( ( ph /\ A <_ B ) -> ( sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) e. RR /\ A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) x. ( abs ` ( b - a ) ) ) ) ) ) |
| 27 | oveq1 | |- ( k = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) -> ( k x. ( abs ` ( b - a ) ) ) = ( sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) x. ( abs ` ( b - a ) ) ) ) |
|
| 28 | 27 | breq2d | |- ( k = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) x. ( abs ` ( b - a ) ) ) ) ) |
| 29 | 28 | imbi2d | |- ( k = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) -> ( ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) <-> ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) x. ( abs ` ( b - a ) ) ) ) ) ) |
| 30 | 29 | 2ralbidv | |- ( k = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) <-> A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) x. ( abs ` ( b - a ) ) ) ) ) ) |
| 31 | 30 | rspcev | |- ( ( sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) e. RR /\ A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) x. ( abs ` ( b - a ) ) ) ) ) -> E. k e. RR A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) ) |
| 32 | 26 31 | syl | |- ( ( ph /\ A <_ B ) -> E. k e. RR A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) ) |
| 33 | breq1 | |- ( a = x -> ( a < b <-> x < b ) ) |
|
| 34 | fveq2 | |- ( a = x -> ( F ` a ) = ( F ` x ) ) |
|
| 35 | 34 | oveq2d | |- ( a = x -> ( ( F ` b ) - ( F ` a ) ) = ( ( F ` b ) - ( F ` x ) ) ) |
| 36 | 35 | fveq2d | |- ( a = x -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) = ( abs ` ( ( F ` b ) - ( F ` x ) ) ) ) |
| 37 | oveq2 | |- ( a = x -> ( b - a ) = ( b - x ) ) |
|
| 38 | 37 | fveq2d | |- ( a = x -> ( abs ` ( b - a ) ) = ( abs ` ( b - x ) ) ) |
| 39 | 38 | oveq2d | |- ( a = x -> ( k x. ( abs ` ( b - a ) ) ) = ( k x. ( abs ` ( b - x ) ) ) ) |
| 40 | 36 39 | breq12d | |- ( a = x -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( b - x ) ) ) ) ) |
| 41 | 33 40 | imbi12d | |- ( a = x -> ( ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) <-> ( x < b -> ( abs ` ( ( F ` b ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( b - x ) ) ) ) ) ) |
| 42 | breq2 | |- ( b = y -> ( x < b <-> x < y ) ) |
|
| 43 | fveq2 | |- ( b = y -> ( F ` b ) = ( F ` y ) ) |
|
| 44 | 43 | fvoveq1d | |- ( b = y -> ( abs ` ( ( F ` b ) - ( F ` x ) ) ) = ( abs ` ( ( F ` y ) - ( F ` x ) ) ) ) |
| 45 | fvoveq1 | |- ( b = y -> ( abs ` ( b - x ) ) = ( abs ` ( y - x ) ) ) |
|
| 46 | 45 | oveq2d | |- ( b = y -> ( k x. ( abs ` ( b - x ) ) ) = ( k x. ( abs ` ( y - x ) ) ) ) |
| 47 | 44 46 | breq12d | |- ( b = y -> ( ( abs ` ( ( F ` b ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( b - x ) ) ) <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 48 | 42 47 | imbi12d | |- ( b = y -> ( ( x < b -> ( abs ` ( ( F ` b ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( b - x ) ) ) ) <-> ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) ) |
| 49 | 41 48 | rspc2v | |- ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) ) |
| 50 | 49 | ad2antlr | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) ) |
| 51 | pm2.27 | |- ( x < y -> ( ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
|
| 52 | 51 | adantl | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 53 | 50 52 | syld | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 54 | 0le0 | |- 0 <_ 0 |
|
| 55 | fvres | |- ( x e. ( A [,] B ) -> ( ( F |` ( A [,] B ) ) ` x ) = ( F ` x ) ) |
|
| 56 | 55 | ad2antrl | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) ` x ) = ( F ` x ) ) |
| 57 | cncff | |- ( ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
|
| 58 | 5 57 | syl | |- ( ph -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
| 59 | 58 | ad2antrr | |- ( ( ( ph /\ A <_ B ) /\ k e. RR ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
| 60 | simpl | |- ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
|
| 61 | ffvelcdm | |- ( ( ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR /\ x e. ( A [,] B ) ) -> ( ( F |` ( A [,] B ) ) ` x ) e. RR ) |
|
| 62 | 59 60 61 | syl2an | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) ` x ) e. RR ) |
| 63 | 56 62 | eqeltrrd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( F ` x ) e. RR ) |
| 64 | 63 | recnd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( F ` x ) e. CC ) |
| 65 | 64 | subidd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( F ` x ) - ( F ` x ) ) = 0 ) |
| 66 | 65 | abs00bd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` x ) - ( F ` x ) ) ) = 0 ) |
| 67 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 68 | 1 2 67 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 69 | 68 | ad3antrrr | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( A [,] B ) C_ RR ) |
| 70 | simprl | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> x e. ( A [,] B ) ) |
|
| 71 | 69 70 | sseldd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> x e. RR ) |
| 72 | 71 | recnd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> x e. CC ) |
| 73 | 72 | subidd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x - x ) = 0 ) |
| 74 | 73 | abs00bd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( abs ` ( x - x ) ) = 0 ) |
| 75 | 74 | oveq2d | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( k x. ( abs ` ( x - x ) ) ) = ( k x. 0 ) ) |
| 76 | simplr | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> k e. RR ) |
|
| 77 | 76 | recnd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> k e. CC ) |
| 78 | 77 | mul01d | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( k x. 0 ) = 0 ) |
| 79 | 75 78 | eqtrd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( k x. ( abs ` ( x - x ) ) ) = 0 ) |
| 80 | 66 79 | breq12d | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( abs ` ( ( F ` x ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( x - x ) ) ) <-> 0 <_ 0 ) ) |
| 81 | 54 80 | mpbiri | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` x ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( x - x ) ) ) ) |
| 82 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 83 | 82 | fvoveq1d | |- ( x = y -> ( abs ` ( ( F ` x ) - ( F ` x ) ) ) = ( abs ` ( ( F ` y ) - ( F ` x ) ) ) ) |
| 84 | fvoveq1 | |- ( x = y -> ( abs ` ( x - x ) ) = ( abs ` ( y - x ) ) ) |
|
| 85 | 84 | oveq2d | |- ( x = y -> ( k x. ( abs ` ( x - x ) ) ) = ( k x. ( abs ` ( y - x ) ) ) ) |
| 86 | 83 85 | breq12d | |- ( x = y -> ( ( abs ` ( ( F ` x ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( x - x ) ) ) <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 87 | 81 86 | syl5ibcom | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x = y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 88 | 87 | imp | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x = y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| 89 | 88 | a1d | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x = y ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 90 | breq1 | |- ( a = y -> ( a < b <-> y < b ) ) |
|
| 91 | fveq2 | |- ( a = y -> ( F ` a ) = ( F ` y ) ) |
|
| 92 | 91 | oveq2d | |- ( a = y -> ( ( F ` b ) - ( F ` a ) ) = ( ( F ` b ) - ( F ` y ) ) ) |
| 93 | 92 | fveq2d | |- ( a = y -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) = ( abs ` ( ( F ` b ) - ( F ` y ) ) ) ) |
| 94 | oveq2 | |- ( a = y -> ( b - a ) = ( b - y ) ) |
|
| 95 | 94 | fveq2d | |- ( a = y -> ( abs ` ( b - a ) ) = ( abs ` ( b - y ) ) ) |
| 96 | 95 | oveq2d | |- ( a = y -> ( k x. ( abs ` ( b - a ) ) ) = ( k x. ( abs ` ( b - y ) ) ) ) |
| 97 | 93 96 | breq12d | |- ( a = y -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( b - y ) ) ) ) ) |
| 98 | 90 97 | imbi12d | |- ( a = y -> ( ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) <-> ( y < b -> ( abs ` ( ( F ` b ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( b - y ) ) ) ) ) ) |
| 99 | breq2 | |- ( b = x -> ( y < b <-> y < x ) ) |
|
| 100 | fveq2 | |- ( b = x -> ( F ` b ) = ( F ` x ) ) |
|
| 101 | 100 | fvoveq1d | |- ( b = x -> ( abs ` ( ( F ` b ) - ( F ` y ) ) ) = ( abs ` ( ( F ` x ) - ( F ` y ) ) ) ) |
| 102 | fvoveq1 | |- ( b = x -> ( abs ` ( b - y ) ) = ( abs ` ( x - y ) ) ) |
|
| 103 | 102 | oveq2d | |- ( b = x -> ( k x. ( abs ` ( b - y ) ) ) = ( k x. ( abs ` ( x - y ) ) ) ) |
| 104 | 101 103 | breq12d | |- ( b = x -> ( ( abs ` ( ( F ` b ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( b - y ) ) ) <-> ( abs ` ( ( F ` x ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( x - y ) ) ) ) ) |
| 105 | 99 104 | imbi12d | |- ( b = x -> ( ( y < b -> ( abs ` ( ( F ` b ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( b - y ) ) ) ) <-> ( y < x -> ( abs ` ( ( F ` x ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( x - y ) ) ) ) ) ) |
| 106 | 98 105 | rspc2v | |- ( ( y e. ( A [,] B ) /\ x e. ( A [,] B ) ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( y < x -> ( abs ` ( ( F ` x ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( x - y ) ) ) ) ) ) |
| 107 | 106 | ancoms | |- ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( y < x -> ( abs ` ( ( F ` x ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( x - y ) ) ) ) ) ) |
| 108 | 107 | ad2antlr | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( y < x -> ( abs ` ( ( F ` x ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( x - y ) ) ) ) ) ) |
| 109 | simpr | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> y < x ) |
|
| 110 | fvres | |- ( y e. ( A [,] B ) -> ( ( F |` ( A [,] B ) ) ` y ) = ( F ` y ) ) |
|
| 111 | 110 | ad2antll | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) ` y ) = ( F ` y ) ) |
| 112 | simpr | |- ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> y e. ( A [,] B ) ) |
|
| 113 | ffvelcdm | |- ( ( ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR /\ y e. ( A [,] B ) ) -> ( ( F |` ( A [,] B ) ) ` y ) e. RR ) |
|
| 114 | 59 112 113 | syl2an | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) ` y ) e. RR ) |
| 115 | 111 114 | eqeltrrd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( F ` y ) e. RR ) |
| 116 | 115 | recnd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( F ` y ) e. CC ) |
| 117 | 64 116 | abssubd | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` x ) - ( F ` y ) ) ) = ( abs ` ( ( F ` y ) - ( F ` x ) ) ) ) |
| 118 | 117 | adantr | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> ( abs ` ( ( F ` x ) - ( F ` y ) ) ) = ( abs ` ( ( F ` y ) - ( F ` x ) ) ) ) |
| 119 | 68 | ad2antrr | |- ( ( ( ph /\ A <_ B ) /\ k e. RR ) -> ( A [,] B ) C_ RR ) |
| 120 | 119 | sseld | |- ( ( ( ph /\ A <_ B ) /\ k e. RR ) -> ( x e. ( A [,] B ) -> x e. RR ) ) |
| 121 | 119 | sseld | |- ( ( ( ph /\ A <_ B ) /\ k e. RR ) -> ( y e. ( A [,] B ) -> y e. RR ) ) |
| 122 | 120 121 | anim12d | |- ( ( ( ph /\ A <_ B ) /\ k e. RR ) -> ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x e. RR /\ y e. RR ) ) ) |
| 123 | 122 | imp | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x e. RR /\ y e. RR ) ) |
| 124 | recn | |- ( x e. RR -> x e. CC ) |
|
| 125 | recn | |- ( y e. RR -> y e. CC ) |
|
| 126 | abssub | |- ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x - y ) ) = ( abs ` ( y - x ) ) ) |
|
| 127 | 124 125 126 | syl2an | |- ( ( x e. RR /\ y e. RR ) -> ( abs ` ( x - y ) ) = ( abs ` ( y - x ) ) ) |
| 128 | 123 127 | syl | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( abs ` ( x - y ) ) = ( abs ` ( y - x ) ) ) |
| 129 | 128 | adantr | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> ( abs ` ( x - y ) ) = ( abs ` ( y - x ) ) ) |
| 130 | 129 | oveq2d | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> ( k x. ( abs ` ( x - y ) ) ) = ( k x. ( abs ` ( y - x ) ) ) ) |
| 131 | 118 130 | breq12d | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> ( ( abs ` ( ( F ` x ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( x - y ) ) ) <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 132 | 131 | biimpd | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> ( ( abs ` ( ( F ` x ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( x - y ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 133 | 109 132 | embantd | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> ( ( y < x -> ( abs ` ( ( F ` x ) - ( F ` y ) ) ) <_ ( k x. ( abs ` ( x - y ) ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 134 | 108 133 | syld | |- ( ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ y < x ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 135 | lttri4 | |- ( ( x e. RR /\ y e. RR ) -> ( x < y \/ x = y \/ y < x ) ) |
|
| 136 | 123 135 | syl | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x < y \/ x = y \/ y < x ) ) |
| 137 | 53 89 134 136 | mpjao3dan | |- ( ( ( ( ph /\ A <_ B ) /\ k e. RR ) /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 138 | 137 | ralrimdvva | |- ( ( ( ph /\ A <_ B ) /\ k e. RR ) -> ( A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 139 | 138 | reximdva | |- ( ( ph /\ A <_ B ) -> ( E. k e. RR A. a e. ( A [,] B ) A. b e. ( A [,] B ) ( a < b -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( k x. ( abs ` ( b - a ) ) ) ) -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 140 | 32 139 | mpd | |- ( ( ph /\ A <_ B ) -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| 141 | 18 140 2 1 | ltlecasei | |- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |