This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for c1lip1 . (Contributed by Stefan O'Rear, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c1liplem1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| c1liplem1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| c1liplem1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| c1liplem1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | ||
| c1liplem1.dv | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| c1liplem1.cn | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| c1liplem1.k | ⊢ 𝐾 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) | ||
| Assertion | c1liplem1 | ⊢ ( 𝜑 → ( 𝐾 ∈ ℝ ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1liplem1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | c1liplem1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | c1liplem1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | c1liplem1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 5 | c1liplem1.dv | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 6 | c1liplem1.cn | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 7 | c1liplem1.k | ⊢ 𝐾 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) | |
| 8 | imassrn | ⊢ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ran abs | |
| 9 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 10 | frn | ⊢ ( abs : ℂ ⟶ ℝ → ran abs ⊆ ℝ ) | |
| 11 | 9 10 | ax-mp | ⊢ ran abs ⊆ ℝ |
| 12 | 8 11 | sstri | ⊢ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 14 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 15 | ffun | ⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ → Fun ( ℝ D 𝐹 ) ) | |
| 16 | 14 15 | ax-mp | ⊢ Fun ( ℝ D 𝐹 ) |
| 17 | 16 | a1i | ⊢ ( 𝜑 → Fun ( ℝ D 𝐹 ) ) |
| 18 | cncff | ⊢ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 19 | fdm | ⊢ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → dom ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) | |
| 20 | 5 18 19 | 3syl | ⊢ ( 𝜑 → dom ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 21 | ssdmres | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 23 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 24 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 25 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 26 | 23 24 3 25 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 27 | funfvima2 | ⊢ ( ( Fun ( ℝ D 𝐹 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 28 | 27 | imp | ⊢ ( ( ( Fun ( ℝ D 𝐹 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 29 | 17 22 26 28 | syl21anc | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 30 | ffun | ⊢ ( abs : ℂ ⟶ ℝ → Fun abs ) | |
| 31 | 9 30 | ax-mp | ⊢ Fun abs |
| 32 | imassrn | ⊢ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ⊆ ran ( ℝ D 𝐹 ) | |
| 33 | frn | ⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ → ran ( ℝ D 𝐹 ) ⊆ ℂ ) | |
| 34 | 14 33 | ax-mp | ⊢ ran ( ℝ D 𝐹 ) ⊆ ℂ |
| 35 | 32 34 | sstri | ⊢ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℂ |
| 36 | 9 | fdmi | ⊢ dom abs = ℂ |
| 37 | 35 36 | sseqtrri | ⊢ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ⊆ dom abs |
| 38 | funfvima2 | ⊢ ( ( Fun abs ∧ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ⊆ dom abs ) → ( ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) ) | |
| 39 | 31 37 38 | mp2an | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 40 | ne0i | ⊢ ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ≠ ∅ ) | |
| 41 | 29 39 40 | 3syl | ⊢ ( 𝜑 → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ≠ ∅ ) |
| 42 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 43 | ssid | ⊢ ℂ ⊆ ℂ | |
| 44 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 45 | 42 43 44 | mp2an | ⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 46 | 45 5 | sselid | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 47 | cniccbdd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) | |
| 48 | 1 2 46 47 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) |
| 49 | fvelima | ⊢ ( ( Fun abs ∧ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) → ∃ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 ) = 𝑏 ) | |
| 50 | 31 49 | mpan | ⊢ ( 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 ) = 𝑏 ) |
| 51 | fvres | ⊢ ( 𝑏 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) = ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) | |
| 52 | 51 | adantl | ⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) = ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) |
| 53 | 52 | fveq2d | ⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) ) |
| 54 | 2fveq3 | ⊢ ( 𝑥 = 𝑏 → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) ) | |
| 55 | 54 | breq1d | ⊢ ( 𝑥 = 𝑏 → ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ↔ ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) ≤ 𝑎 ) ) |
| 56 | 55 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) ≤ 𝑎 ) |
| 57 | 53 56 | eqbrtrrd | ⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) ≤ 𝑎 ) |
| 58 | 57 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) ≤ 𝑎 ) |
| 59 | fveq2 | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) = ( abs ‘ 𝑦 ) ) | |
| 60 | 59 | breq1d | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) ≤ 𝑎 ↔ ( abs ‘ 𝑦 ) ≤ 𝑎 ) ) |
| 61 | 58 60 | syl5ibcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 → ( abs ‘ 𝑦 ) ≤ 𝑎 ) ) |
| 62 | 61 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 → ( abs ‘ 𝑦 ) ≤ 𝑎 ) ) |
| 63 | fvelima | ⊢ ( ( Fun ( ℝ D 𝐹 ) ∧ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 ) | |
| 64 | 16 63 | mpan | ⊢ ( 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 ) |
| 65 | 62 64 | impel | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) ∧ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ 𝑦 ) ≤ 𝑎 ) |
| 66 | breq1 | ⊢ ( ( abs ‘ 𝑦 ) = 𝑏 → ( ( abs ‘ 𝑦 ) ≤ 𝑎 ↔ 𝑏 ≤ 𝑎 ) ) | |
| 67 | 65 66 | syl5ibcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) ∧ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ 𝑦 ) = 𝑏 → 𝑏 ≤ 𝑎 ) ) |
| 68 | 67 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( ∃ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 ) = 𝑏 → 𝑏 ≤ 𝑎 ) ) |
| 69 | 50 68 | syl5 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → 𝑏 ≤ 𝑎 ) ) |
| 70 | 69 | ralrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) |
| 71 | 70 | ex | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 → ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) ) |
| 72 | 71 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 → ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) ) |
| 73 | 48 72 | mpd | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) |
| 74 | 13 41 73 | suprcld | ⊢ ( 𝜑 → sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ∈ ℝ ) |
| 75 | 7 74 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 76 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 77 | 76 | fvresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 78 | cncff | ⊢ ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 79 | 6 78 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 81 | 80 76 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 82 | 81 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 83 | 77 82 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 84 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 85 | 84 | fvresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 86 | 80 84 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 87 | 86 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 88 | 85 87 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 89 | 83 88 | subcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 90 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 91 | 1 2 90 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 92 | 91 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 93 | 92 76 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 94 | 92 84 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
| 95 | 93 94 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ ) |
| 96 | 95 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
| 97 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) | |
| 98 | difrp | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℝ+ ) ) | |
| 99 | 94 93 98 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 < 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℝ+ ) ) |
| 100 | 97 99 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ+ ) |
| 101 | 100 | rpne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ≠ 0 ) |
| 102 | 89 96 101 | absdivd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) / ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 103 | 12 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 104 | 41 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ≠ ∅ ) |
| 105 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) |
| 106 | 31 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → Fun abs ) |
| 107 | 89 96 101 | divcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ℂ ) |
| 108 | 107 36 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ dom abs ) |
| 109 | 94 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ* ) |
| 110 | 93 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ* ) |
| 111 | 94 93 97 | ltled | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ≤ 𝑦 ) |
| 112 | ubicc2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ∈ ( 𝑥 [,] 𝑦 ) ) | |
| 113 | 109 110 111 112 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 𝑥 [,] 𝑦 ) ) |
| 114 | 113 | fvresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 115 | lbicc2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ∈ ( 𝑥 [,] 𝑦 ) ) | |
| 116 | 109 110 111 115 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 𝑥 [,] 𝑦 ) ) |
| 117 | 116 | fvresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 118 | 114 117 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 119 | 118 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) |
| 120 | iccss2 | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 121 | 120 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 122 | 121 | resabs1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( 𝑥 [,] 𝑦 ) ) = ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) |
| 123 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 124 | rescncf | ⊢ ( ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( 𝑥 [,] 𝑦 ) ) ∈ ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) ) | |
| 125 | 121 123 124 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( 𝑥 [,] 𝑦 ) ) ∈ ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) |
| 126 | 122 125 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ∈ ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) |
| 127 | 42 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ℝ ⊆ ℂ ) |
| 128 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 129 | cnex | ⊢ ℂ ∈ V | |
| 130 | reex | ⊢ ℝ ∈ V | |
| 131 | 129 130 | elpm2 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 132 | 131 | simplbi | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 133 | 128 132 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 134 | 131 | simprbi | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → dom 𝐹 ⊆ ℝ ) |
| 135 | 128 134 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → dom 𝐹 ⊆ ℝ ) |
| 136 | iccssre | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) | |
| 137 | 94 93 136 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) |
| 138 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 139 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 140 | 138 139 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) ∧ ( dom 𝐹 ⊆ ℝ ∧ ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) ) |
| 141 | 127 133 135 137 140 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) ) |
| 142 | iccntr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) | |
| 143 | 94 93 142 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 144 | 143 | reseq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ) |
| 145 | 141 144 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ) |
| 146 | 145 | dmeqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ) |
| 147 | ioossicc | ⊢ ( 𝑥 (,) 𝑦 ) ⊆ ( 𝑥 [,] 𝑦 ) | |
| 148 | 147 121 | sstrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 (,) 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 149 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 150 | 148 149 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 151 | ssdmres | ⊢ ( ( 𝑥 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) | |
| 152 | 150 151 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → dom ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 153 | 146 152 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 154 | 94 93 97 126 153 | mvth | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ∃ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) |
| 155 | 145 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) ) |
| 156 | 155 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) ) |
| 157 | fvres | ⊢ ( 𝑎 ∈ ( 𝑥 (,) 𝑦 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) = ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ) | |
| 158 | 157 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) = ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ) |
| 159 | 156 158 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ) |
| 160 | 16 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → Fun ( ℝ D 𝐹 ) ) |
| 161 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 162 | 148 | sseld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑎 ∈ ( 𝑥 (,) 𝑦 ) → 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 163 | 162 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 164 | funfvima2 | ⊢ ( ( Fun ( ℝ D 𝐹 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 165 | 164 | imp | ⊢ ( ( ( Fun ( ℝ D 𝐹 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) ∧ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 166 | 160 161 163 165 | syl21anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 167 | 159 166 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 168 | eleq1 | ⊢ ( ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 169 | 167 168 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 170 | 169 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑎 ∈ ( 𝑥 (,) 𝑦 ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 171 | 170 | rexlimdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ∃ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 172 | 154 171 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 173 | 119 172 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 174 | funfvima | ⊢ ( ( Fun abs ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ dom abs ) → ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) ) | |
| 175 | 174 | imp | ⊢ ( ( ( Fun abs ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ dom abs ) ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 176 | 106 108 173 175 | syl21anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 177 | 103 104 105 176 | suprubd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ≤ sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ) |
| 178 | 177 7 | breqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ≤ 𝐾 ) |
| 179 | 102 178 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) / ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ≤ 𝐾 ) |
| 180 | 89 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 181 | 75 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐾 ∈ ℝ ) |
| 182 | 96 101 | absrpcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) ∈ ℝ+ ) |
| 183 | 180 181 182 | ledivmuld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) / ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ≤ 𝐾 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ ( 𝑦 − 𝑥 ) ) · 𝐾 ) ) ) |
| 184 | 179 183 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ ( 𝑦 − 𝑥 ) ) · 𝐾 ) ) |
| 185 | 182 | rpcnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) ∈ ℂ ) |
| 186 | 181 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐾 ∈ ℂ ) |
| 187 | 185 186 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( abs ‘ ( 𝑦 − 𝑥 ) ) · 𝐾 ) = ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 188 | 184 187 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 189 | 188 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 190 | 189 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 191 | 75 190 | jca | ⊢ ( 𝜑 → ( 𝐾 ∈ ℝ ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |