This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funfvima | |- ( ( Fun F /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres | |- dom ( F |` A ) = ( A i^i dom F ) |
|
| 2 | 1 | elin2 | |- ( B e. dom ( F |` A ) <-> ( B e. A /\ B e. dom F ) ) |
| 3 | funres | |- ( Fun F -> Fun ( F |` A ) ) |
|
| 4 | fvelrn | |- ( ( Fun ( F |` A ) /\ B e. dom ( F |` A ) ) -> ( ( F |` A ) ` B ) e. ran ( F |` A ) ) |
|
| 5 | 3 4 | sylan | |- ( ( Fun F /\ B e. dom ( F |` A ) ) -> ( ( F |` A ) ` B ) e. ran ( F |` A ) ) |
| 6 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
| 7 | 6 | eleq2i | |- ( ( F ` B ) e. ( F " A ) <-> ( F ` B ) e. ran ( F |` A ) ) |
| 8 | fvres | |- ( B e. A -> ( ( F |` A ) ` B ) = ( F ` B ) ) |
|
| 9 | 8 | eleq1d | |- ( B e. A -> ( ( ( F |` A ) ` B ) e. ran ( F |` A ) <-> ( F ` B ) e. ran ( F |` A ) ) ) |
| 10 | 7 9 | bitr4id | |- ( B e. A -> ( ( F ` B ) e. ( F " A ) <-> ( ( F |` A ) ` B ) e. ran ( F |` A ) ) ) |
| 11 | 5 10 | syl5ibrcom | |- ( ( Fun F /\ B e. dom ( F |` A ) ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) |
| 12 | 11 | ex | |- ( Fun F -> ( B e. dom ( F |` A ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) |
| 13 | 2 12 | biimtrrid | |- ( Fun F -> ( ( B e. A /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) |
| 14 | 13 | expd | |- ( Fun F -> ( B e. A -> ( B e. dom F -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) ) |
| 15 | 14 | com12 | |- ( B e. A -> ( Fun F -> ( B e. dom F -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) ) |
| 16 | 15 | impd | |- ( B e. A -> ( ( Fun F /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) |
| 17 | 16 | pm2.43b | |- ( ( Fun F /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) |