This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pascal's rule for the binomial coefficient, generalized to all integers K . Equation 2 of Gleason p. 295. (Contributed by NM, 13-Jul-2005) (Revised by Mario Carneiro, 10-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcpasc | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 2 | elfzp12 | |- ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( K e. ( 0 ... ( N + 1 ) ) <-> ( K = 0 \/ K e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) ) |
|
| 3 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 4 | 2 3 | eleq2s | |- ( ( N + 1 ) e. NN0 -> ( K e. ( 0 ... ( N + 1 ) ) <-> ( K = 0 \/ K e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) ) |
| 5 | 1 4 | syl | |- ( N e. NN0 -> ( K e. ( 0 ... ( N + 1 ) ) <-> ( K = 0 \/ K e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) ) |
| 6 | 1p0e1 | |- ( 1 + 0 ) = 1 |
|
| 7 | bcn0 | |- ( N e. NN0 -> ( N _C 0 ) = 1 ) |
|
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | 1z | |- 1 e. ZZ |
|
| 10 | zsubcl | |- ( ( 0 e. ZZ /\ 1 e. ZZ ) -> ( 0 - 1 ) e. ZZ ) |
|
| 11 | 8 9 10 | mp2an | |- ( 0 - 1 ) e. ZZ |
| 12 | 0re | |- 0 e. RR |
|
| 13 | ltm1 | |- ( 0 e. RR -> ( 0 - 1 ) < 0 ) |
|
| 14 | 12 13 | ax-mp | |- ( 0 - 1 ) < 0 |
| 15 | 14 | orci | |- ( ( 0 - 1 ) < 0 \/ N < ( 0 - 1 ) ) |
| 16 | bcval4 | |- ( ( N e. NN0 /\ ( 0 - 1 ) e. ZZ /\ ( ( 0 - 1 ) < 0 \/ N < ( 0 - 1 ) ) ) -> ( N _C ( 0 - 1 ) ) = 0 ) |
|
| 17 | 11 15 16 | mp3an23 | |- ( N e. NN0 -> ( N _C ( 0 - 1 ) ) = 0 ) |
| 18 | 7 17 | oveq12d | |- ( N e. NN0 -> ( ( N _C 0 ) + ( N _C ( 0 - 1 ) ) ) = ( 1 + 0 ) ) |
| 19 | bcn0 | |- ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) _C 0 ) = 1 ) |
|
| 20 | 1 19 | syl | |- ( N e. NN0 -> ( ( N + 1 ) _C 0 ) = 1 ) |
| 21 | 6 18 20 | 3eqtr4a | |- ( N e. NN0 -> ( ( N _C 0 ) + ( N _C ( 0 - 1 ) ) ) = ( ( N + 1 ) _C 0 ) ) |
| 22 | oveq2 | |- ( K = 0 -> ( N _C K ) = ( N _C 0 ) ) |
|
| 23 | oveq1 | |- ( K = 0 -> ( K - 1 ) = ( 0 - 1 ) ) |
|
| 24 | 23 | oveq2d | |- ( K = 0 -> ( N _C ( K - 1 ) ) = ( N _C ( 0 - 1 ) ) ) |
| 25 | 22 24 | oveq12d | |- ( K = 0 -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N _C 0 ) + ( N _C ( 0 - 1 ) ) ) ) |
| 26 | oveq2 | |- ( K = 0 -> ( ( N + 1 ) _C K ) = ( ( N + 1 ) _C 0 ) ) |
|
| 27 | 25 26 | eqeq12d | |- ( K = 0 -> ( ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) <-> ( ( N _C 0 ) + ( N _C ( 0 - 1 ) ) ) = ( ( N + 1 ) _C 0 ) ) ) |
| 28 | 21 27 | syl5ibrcom | |- ( N e. NN0 -> ( K = 0 -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) ) |
| 29 | simpr | |- ( ( N e. NN0 /\ K e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> K e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) |
|
| 30 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 31 | 30 | oveq1i | |- ( ( 0 + 1 ) ... ( N + 1 ) ) = ( 1 ... ( N + 1 ) ) |
| 32 | 29 31 | eleqtrdi | |- ( ( N e. NN0 /\ K e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> K e. ( 1 ... ( N + 1 ) ) ) |
| 33 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 34 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 35 | 33 34 | eleqtrdi | |- ( N e. NN0 -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 36 | fzm1 | |- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( K e. ( 1 ... ( N + 1 ) ) <-> ( K e. ( 1 ... ( ( N + 1 ) - 1 ) ) \/ K = ( N + 1 ) ) ) ) |
|
| 37 | 36 | biimpa | |- ( ( ( N + 1 ) e. ( ZZ>= ` 1 ) /\ K e. ( 1 ... ( N + 1 ) ) ) -> ( K e. ( 1 ... ( ( N + 1 ) - 1 ) ) \/ K = ( N + 1 ) ) ) |
| 38 | 35 37 | sylan | |- ( ( N e. NN0 /\ K e. ( 1 ... ( N + 1 ) ) ) -> ( K e. ( 1 ... ( ( N + 1 ) - 1 ) ) \/ K = ( N + 1 ) ) ) |
| 39 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 40 | ax-1cn | |- 1 e. CC |
|
| 41 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 42 | 39 40 41 | sylancl | |- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
| 43 | 42 | oveq2d | |- ( N e. NN0 -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) |
| 44 | 43 | eleq2d | |- ( N e. NN0 -> ( K e. ( 1 ... ( ( N + 1 ) - 1 ) ) <-> K e. ( 1 ... N ) ) ) |
| 45 | 44 | biimpa | |- ( ( N e. NN0 /\ K e. ( 1 ... ( ( N + 1 ) - 1 ) ) ) -> K e. ( 1 ... N ) ) |
| 46 | fz1ssfz0 | |- ( 1 ... N ) C_ ( 0 ... N ) |
|
| 47 | 46 | sseli | |- ( K e. ( 1 ... N ) -> K e. ( 0 ... N ) ) |
| 48 | bcp1n | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
|
| 49 | 47 48 | syl | |- ( K e. ( 1 ... N ) -> ( ( N + 1 ) _C K ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
| 50 | bcrpcl | |- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |
|
| 51 | 47 50 | syl | |- ( K e. ( 1 ... N ) -> ( N _C K ) e. RR+ ) |
| 52 | 51 | rpcnd | |- ( K e. ( 1 ... N ) -> ( N _C K ) e. CC ) |
| 53 | elfzuz2 | |- ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) |
|
| 54 | 53 34 | eleqtrrdi | |- ( K e. ( 1 ... N ) -> N e. NN ) |
| 55 | 54 | peano2nnd | |- ( K e. ( 1 ... N ) -> ( N + 1 ) e. NN ) |
| 56 | 55 | nncnd | |- ( K e. ( 1 ... N ) -> ( N + 1 ) e. CC ) |
| 57 | 54 | nncnd | |- ( K e. ( 1 ... N ) -> N e. CC ) |
| 58 | 1cnd | |- ( K e. ( 1 ... N ) -> 1 e. CC ) |
|
| 59 | elfzelz | |- ( K e. ( 1 ... N ) -> K e. ZZ ) |
|
| 60 | 59 | zcnd | |- ( K e. ( 1 ... N ) -> K e. CC ) |
| 61 | 57 58 60 | addsubd | |- ( K e. ( 1 ... N ) -> ( ( N + 1 ) - K ) = ( ( N - K ) + 1 ) ) |
| 62 | fznn0sub | |- ( K e. ( 1 ... N ) -> ( N - K ) e. NN0 ) |
|
| 63 | nn0p1nn | |- ( ( N - K ) e. NN0 -> ( ( N - K ) + 1 ) e. NN ) |
|
| 64 | 62 63 | syl | |- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN ) |
| 65 | 61 64 | eqeltrd | |- ( K e. ( 1 ... N ) -> ( ( N + 1 ) - K ) e. NN ) |
| 66 | 65 | nncnd | |- ( K e. ( 1 ... N ) -> ( ( N + 1 ) - K ) e. CC ) |
| 67 | 65 | nnne0d | |- ( K e. ( 1 ... N ) -> ( ( N + 1 ) - K ) =/= 0 ) |
| 68 | 52 56 66 67 | div12d | |- ( K e. ( 1 ... N ) -> ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( N + 1 ) x. ( ( N _C K ) / ( ( N + 1 ) - K ) ) ) ) |
| 69 | 65 | nnrpd | |- ( K e. ( 1 ... N ) -> ( ( N + 1 ) - K ) e. RR+ ) |
| 70 | 51 69 | rpdivcld | |- ( K e. ( 1 ... N ) -> ( ( N _C K ) / ( ( N + 1 ) - K ) ) e. RR+ ) |
| 71 | 70 | rpcnd | |- ( K e. ( 1 ... N ) -> ( ( N _C K ) / ( ( N + 1 ) - K ) ) e. CC ) |
| 72 | 56 71 | mulcomd | |- ( K e. ( 1 ... N ) -> ( ( N + 1 ) x. ( ( N _C K ) / ( ( N + 1 ) - K ) ) ) = ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( N + 1 ) ) ) |
| 73 | 68 72 | eqtrd | |- ( K e. ( 1 ... N ) -> ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( N + 1 ) ) ) |
| 74 | 56 60 | npcand | |- ( K e. ( 1 ... N ) -> ( ( ( N + 1 ) - K ) + K ) = ( N + 1 ) ) |
| 75 | 74 | oveq2d | |- ( K e. ( 1 ... N ) -> ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) + K ) ) = ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( N + 1 ) ) ) |
| 76 | 71 66 60 | adddid | |- ( K e. ( 1 ... N ) -> ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) + K ) ) = ( ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( ( N + 1 ) - K ) ) + ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. K ) ) ) |
| 77 | 73 75 76 | 3eqtr2d | |- ( K e. ( 1 ... N ) -> ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( ( N + 1 ) - K ) ) + ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. K ) ) ) |
| 78 | 52 66 67 | divcan1d | |- ( K e. ( 1 ... N ) -> ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( ( N + 1 ) - K ) ) = ( N _C K ) ) |
| 79 | elfznn | |- ( K e. ( 1 ... N ) -> K e. NN ) |
|
| 80 | 79 | nnne0d | |- ( K e. ( 1 ... N ) -> K =/= 0 ) |
| 81 | 52 66 60 67 80 | divdiv2d | |- ( K e. ( 1 ... N ) -> ( ( N _C K ) / ( ( ( N + 1 ) - K ) / K ) ) = ( ( ( N _C K ) x. K ) / ( ( N + 1 ) - K ) ) ) |
| 82 | bcm1k | |- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |
|
| 83 | 57 60 58 | subsub3d | |- ( K e. ( 1 ... N ) -> ( N - ( K - 1 ) ) = ( ( N + 1 ) - K ) ) |
| 84 | 83 | oveq1d | |- ( K e. ( 1 ... N ) -> ( ( N - ( K - 1 ) ) / K ) = ( ( ( N + 1 ) - K ) / K ) ) |
| 85 | 84 | oveq2d | |- ( K e. ( 1 ... N ) -> ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( N _C ( K - 1 ) ) x. ( ( ( N + 1 ) - K ) / K ) ) ) |
| 86 | 82 85 | eqtrd | |- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( N _C ( K - 1 ) ) x. ( ( ( N + 1 ) - K ) / K ) ) ) |
| 87 | fzelp1 | |- ( K e. ( 1 ... N ) -> K e. ( 1 ... ( N + 1 ) ) ) |
|
| 88 | 55 | nnzd | |- ( K e. ( 1 ... N ) -> ( N + 1 ) e. ZZ ) |
| 89 | elfzm1b | |- ( ( K e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( K e. ( 1 ... ( N + 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( ( N + 1 ) - 1 ) ) ) ) |
|
| 90 | 59 88 89 | syl2anc | |- ( K e. ( 1 ... N ) -> ( K e. ( 1 ... ( N + 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( ( N + 1 ) - 1 ) ) ) ) |
| 91 | 87 90 | mpbid | |- ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... ( ( N + 1 ) - 1 ) ) ) |
| 92 | 57 40 41 | sylancl | |- ( K e. ( 1 ... N ) -> ( ( N + 1 ) - 1 ) = N ) |
| 93 | 92 | oveq2d | |- ( K e. ( 1 ... N ) -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
| 94 | 91 93 | eleqtrd | |- ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... N ) ) |
| 95 | bcrpcl | |- ( ( K - 1 ) e. ( 0 ... N ) -> ( N _C ( K - 1 ) ) e. RR+ ) |
|
| 96 | 94 95 | syl | |- ( K e. ( 1 ... N ) -> ( N _C ( K - 1 ) ) e. RR+ ) |
| 97 | 96 | rpcnd | |- ( K e. ( 1 ... N ) -> ( N _C ( K - 1 ) ) e. CC ) |
| 98 | 79 | nnrpd | |- ( K e. ( 1 ... N ) -> K e. RR+ ) |
| 99 | 69 98 | rpdivcld | |- ( K e. ( 1 ... N ) -> ( ( ( N + 1 ) - K ) / K ) e. RR+ ) |
| 100 | 99 | rpcnd | |- ( K e. ( 1 ... N ) -> ( ( ( N + 1 ) - K ) / K ) e. CC ) |
| 101 | 99 | rpne0d | |- ( K e. ( 1 ... N ) -> ( ( ( N + 1 ) - K ) / K ) =/= 0 ) |
| 102 | 52 97 100 101 | divmul3d | |- ( K e. ( 1 ... N ) -> ( ( ( N _C K ) / ( ( ( N + 1 ) - K ) / K ) ) = ( N _C ( K - 1 ) ) <-> ( N _C K ) = ( ( N _C ( K - 1 ) ) x. ( ( ( N + 1 ) - K ) / K ) ) ) ) |
| 103 | 86 102 | mpbird | |- ( K e. ( 1 ... N ) -> ( ( N _C K ) / ( ( ( N + 1 ) - K ) / K ) ) = ( N _C ( K - 1 ) ) ) |
| 104 | 52 60 66 67 | div23d | |- ( K e. ( 1 ... N ) -> ( ( ( N _C K ) x. K ) / ( ( N + 1 ) - K ) ) = ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. K ) ) |
| 105 | 81 103 104 | 3eqtr3rd | |- ( K e. ( 1 ... N ) -> ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. K ) = ( N _C ( K - 1 ) ) ) |
| 106 | 78 105 | oveq12d | |- ( K e. ( 1 ... N ) -> ( ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. ( ( N + 1 ) - K ) ) + ( ( ( N _C K ) / ( ( N + 1 ) - K ) ) x. K ) ) = ( ( N _C K ) + ( N _C ( K - 1 ) ) ) ) |
| 107 | 49 77 106 | 3eqtrrd | |- ( K e. ( 1 ... N ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 108 | 45 107 | syl | |- ( ( N e. NN0 /\ K e. ( 1 ... ( ( N + 1 ) - 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 109 | oveq2 | |- ( K = ( N + 1 ) -> ( N _C K ) = ( N _C ( N + 1 ) ) ) |
|
| 110 | 33 | nnzd | |- ( N e. NN0 -> ( N + 1 ) e. ZZ ) |
| 111 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 112 | 111 | ltp1d | |- ( N e. NN0 -> N < ( N + 1 ) ) |
| 113 | 112 | olcd | |- ( N e. NN0 -> ( ( N + 1 ) < 0 \/ N < ( N + 1 ) ) ) |
| 114 | bcval4 | |- ( ( N e. NN0 /\ ( N + 1 ) e. ZZ /\ ( ( N + 1 ) < 0 \/ N < ( N + 1 ) ) ) -> ( N _C ( N + 1 ) ) = 0 ) |
|
| 115 | 110 113 114 | mpd3an23 | |- ( N e. NN0 -> ( N _C ( N + 1 ) ) = 0 ) |
| 116 | 109 115 | sylan9eqr | |- ( ( N e. NN0 /\ K = ( N + 1 ) ) -> ( N _C K ) = 0 ) |
| 117 | oveq1 | |- ( K = ( N + 1 ) -> ( K - 1 ) = ( ( N + 1 ) - 1 ) ) |
|
| 118 | 117 42 | sylan9eqr | |- ( ( N e. NN0 /\ K = ( N + 1 ) ) -> ( K - 1 ) = N ) |
| 119 | 118 | oveq2d | |- ( ( N e. NN0 /\ K = ( N + 1 ) ) -> ( N _C ( K - 1 ) ) = ( N _C N ) ) |
| 120 | bcnn | |- ( N e. NN0 -> ( N _C N ) = 1 ) |
|
| 121 | 120 | adantr | |- ( ( N e. NN0 /\ K = ( N + 1 ) ) -> ( N _C N ) = 1 ) |
| 122 | 119 121 | eqtrd | |- ( ( N e. NN0 /\ K = ( N + 1 ) ) -> ( N _C ( K - 1 ) ) = 1 ) |
| 123 | 116 122 | oveq12d | |- ( ( N e. NN0 /\ K = ( N + 1 ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( 0 + 1 ) ) |
| 124 | oveq2 | |- ( K = ( N + 1 ) -> ( ( N + 1 ) _C K ) = ( ( N + 1 ) _C ( N + 1 ) ) ) |
|
| 125 | bcnn | |- ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) _C ( N + 1 ) ) = 1 ) |
|
| 126 | 1 125 | syl | |- ( N e. NN0 -> ( ( N + 1 ) _C ( N + 1 ) ) = 1 ) |
| 127 | 124 126 | sylan9eqr | |- ( ( N e. NN0 /\ K = ( N + 1 ) ) -> ( ( N + 1 ) _C K ) = 1 ) |
| 128 | 30 123 127 | 3eqtr4a | |- ( ( N e. NN0 /\ K = ( N + 1 ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 129 | 108 128 | jaodan | |- ( ( N e. NN0 /\ ( K e. ( 1 ... ( ( N + 1 ) - 1 ) ) \/ K = ( N + 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 130 | 38 129 | syldan | |- ( ( N e. NN0 /\ K e. ( 1 ... ( N + 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 131 | 32 130 | syldan | |- ( ( N e. NN0 /\ K e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 132 | 131 | ex | |- ( N e. NN0 -> ( K e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) ) |
| 133 | 28 132 | jaod | |- ( N e. NN0 -> ( ( K = 0 \/ K e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) ) |
| 134 | 5 133 | sylbid | |- ( N e. NN0 -> ( K e. ( 0 ... ( N + 1 ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) ) |
| 135 | 134 | imp | |- ( ( N e. NN0 /\ K e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 136 | 135 | adantlr | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ K e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 137 | 00id | |- ( 0 + 0 ) = 0 |
|
| 138 | fzelp1 | |- ( K e. ( 0 ... N ) -> K e. ( 0 ... ( N + 1 ) ) ) |
|
| 139 | 138 | con3i | |- ( -. K e. ( 0 ... ( N + 1 ) ) -> -. K e. ( 0 ... N ) ) |
| 140 | bcval3 | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
|
| 141 | 140 | 3expa | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
| 142 | 139 141 | sylan2 | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> ( N _C K ) = 0 ) |
| 143 | simpll | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> N e. NN0 ) |
|
| 144 | simplr | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> K e. ZZ ) |
|
| 145 | peano2zm | |- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
|
| 146 | 144 145 | syl | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> ( K - 1 ) e. ZZ ) |
| 147 | 39 | adantr | |- ( ( N e. NN0 /\ K e. ZZ ) -> N e. CC ) |
| 148 | 147 40 41 | sylancl | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( N + 1 ) - 1 ) = N ) |
| 149 | 148 | oveq2d | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
| 150 | 149 | eleq2d | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( K - 1 ) e. ( 0 ... ( ( N + 1 ) - 1 ) ) <-> ( K - 1 ) e. ( 0 ... N ) ) ) |
| 151 | id | |- ( K e. ZZ -> K e. ZZ ) |
|
| 152 | 1 | nn0zd | |- ( N e. NN0 -> ( N + 1 ) e. ZZ ) |
| 153 | 151 152 89 | syl2anr | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( K e. ( 1 ... ( N + 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( ( N + 1 ) - 1 ) ) ) ) |
| 154 | fz1ssfz0 | |- ( 1 ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) |
|
| 155 | 154 | sseli | |- ( K e. ( 1 ... ( N + 1 ) ) -> K e. ( 0 ... ( N + 1 ) ) ) |
| 156 | 153 155 | biimtrrdi | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( K - 1 ) e. ( 0 ... ( ( N + 1 ) - 1 ) ) -> K e. ( 0 ... ( N + 1 ) ) ) ) |
| 157 | 150 156 | sylbird | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( K - 1 ) e. ( 0 ... N ) -> K e. ( 0 ... ( N + 1 ) ) ) ) |
| 158 | 157 | con3dimp | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> -. ( K - 1 ) e. ( 0 ... N ) ) |
| 159 | bcval3 | |- ( ( N e. NN0 /\ ( K - 1 ) e. ZZ /\ -. ( K - 1 ) e. ( 0 ... N ) ) -> ( N _C ( K - 1 ) ) = 0 ) |
|
| 160 | 143 146 158 159 | syl3anc | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( K - 1 ) ) = 0 ) |
| 161 | 142 160 | oveq12d | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( 0 + 0 ) ) |
| 162 | 143 1 | syl | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> ( N + 1 ) e. NN0 ) |
| 163 | simpr | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> -. K e. ( 0 ... ( N + 1 ) ) ) |
|
| 164 | bcval3 | |- ( ( ( N + 1 ) e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) _C K ) = 0 ) |
|
| 165 | 162 144 163 164 | syl3anc | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) _C K ) = 0 ) |
| 166 | 137 161 165 | 3eqtr4a | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |
| 167 | 136 166 | pm2.61dan | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( N _C K ) + ( N _C ( K - 1 ) ) ) = ( ( N + 1 ) _C K ) ) |