This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzm1b | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | fzsubel | |- ( ( ( 1 e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
|
| 3 | 1 2 | mpanl1 | |- ( ( N e. ZZ /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 4 | 1 3 | mpanr2 | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 5 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 6 | 5 | oveq1i | |- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
| 7 | 6 | eleq2i | |- ( ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 8 | 4 7 | bitrdi | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 9 | 8 | ancoms | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |