This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the binomial coefficient, N choose K , outside of its standard domain. Remark in Gleason p. 295. (Contributed by NM, 14-Jul-2005) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcval4 | |- ( ( N e. NN0 /\ K e. ZZ /\ ( K < 0 \/ N < K ) ) -> ( N _C K ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 | |- ( K e. ( 0 ... N ) -> 0 <_ K ) |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | elfzelz | |- ( K e. ( 0 ... N ) -> K e. ZZ ) |
|
| 4 | 3 | zred | |- ( K e. ( 0 ... N ) -> K e. RR ) |
| 5 | lenlt | |- ( ( 0 e. RR /\ K e. RR ) -> ( 0 <_ K <-> -. K < 0 ) ) |
|
| 6 | 2 4 5 | sylancr | |- ( K e. ( 0 ... N ) -> ( 0 <_ K <-> -. K < 0 ) ) |
| 7 | 1 6 | mpbid | |- ( K e. ( 0 ... N ) -> -. K < 0 ) |
| 8 | 7 | adantl | |- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> -. K < 0 ) |
| 9 | elfzle2 | |- ( K e. ( 0 ... N ) -> K <_ N ) |
|
| 10 | 9 | adantl | |- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> K <_ N ) |
| 11 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 12 | lenlt | |- ( ( K e. RR /\ N e. RR ) -> ( K <_ N <-> -. N < K ) ) |
|
| 13 | 4 11 12 | syl2anr | |- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> ( K <_ N <-> -. N < K ) ) |
| 14 | 10 13 | mpbid | |- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> -. N < K ) |
| 15 | ioran | |- ( -. ( K < 0 \/ N < K ) <-> ( -. K < 0 /\ -. N < K ) ) |
|
| 16 | 8 14 15 | sylanbrc | |- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> -. ( K < 0 \/ N < K ) ) |
| 17 | 16 | ex | |- ( N e. NN0 -> ( K e. ( 0 ... N ) -> -. ( K < 0 \/ N < K ) ) ) |
| 18 | 17 | adantr | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( K e. ( 0 ... N ) -> -. ( K < 0 \/ N < K ) ) ) |
| 19 | 18 | con2d | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( K < 0 \/ N < K ) -> -. K e. ( 0 ... N ) ) ) |
| 20 | 19 | 3impia | |- ( ( N e. NN0 /\ K e. ZZ /\ ( K < 0 \/ N < K ) ) -> -. K e. ( 0 ... N ) ) |
| 21 | bcval3 | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
|
| 22 | 20 21 | syld3an3 | |- ( ( N e. NN0 /\ K e. ZZ /\ ( K < 0 \/ N < K ) ) -> ( N _C K ) = 0 ) |