This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The proportion of one binomial coefficient to another with K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcm1k | |- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 | |- ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | 1 2 | eleqtrrdi | |- ( K e. ( 1 ... N ) -> N e. NN ) |
| 4 | 3 | nnnn0d | |- ( K e. ( 1 ... N ) -> N e. NN0 ) |
| 5 | 4 | faccld | |- ( K e. ( 1 ... N ) -> ( ! ` N ) e. NN ) |
| 6 | 5 | nncnd | |- ( K e. ( 1 ... N ) -> ( ! ` N ) e. CC ) |
| 7 | fznn0sub | |- ( K e. ( 1 ... N ) -> ( N - K ) e. NN0 ) |
|
| 8 | nn0p1nn | |- ( ( N - K ) e. NN0 -> ( ( N - K ) + 1 ) e. NN ) |
|
| 9 | 7 8 | syl | |- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN ) |
| 10 | 9 | nncnd | |- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. CC ) |
| 11 | 9 | nnnn0d | |- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN0 ) |
| 12 | 11 | faccld | |- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) e. NN ) |
| 13 | elfznn | |- ( K e. ( 1 ... N ) -> K e. NN ) |
|
| 14 | nnm1nn0 | |- ( K e. NN -> ( K - 1 ) e. NN0 ) |
|
| 15 | faccl | |- ( ( K - 1 ) e. NN0 -> ( ! ` ( K - 1 ) ) e. NN ) |
|
| 16 | 13 14 15 | 3syl | |- ( K e. ( 1 ... N ) -> ( ! ` ( K - 1 ) ) e. NN ) |
| 17 | 12 16 | nnmulcld | |- ( K e. ( 1 ... N ) -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN ) |
| 18 | nncn | |- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC ) |
|
| 19 | nnne0 | |- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) |
|
| 20 | 18 19 | jca | |- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) ) |
| 21 | 17 20 | syl | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) ) |
| 22 | 13 | nncnd | |- ( K e. ( 1 ... N ) -> K e. CC ) |
| 23 | 13 | nnne0d | |- ( K e. ( 1 ... N ) -> K =/= 0 ) |
| 24 | 22 23 | jca | |- ( K e. ( 1 ... N ) -> ( K e. CC /\ K =/= 0 ) ) |
| 25 | divmuldiv | |- ( ( ( ( ! ` N ) e. CC /\ ( ( N - K ) + 1 ) e. CC ) /\ ( ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) /\ ( K e. CC /\ K =/= 0 ) ) ) -> ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
|
| 26 | 6 10 21 24 25 | syl22anc | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
| 27 | elfzel2 | |- ( K e. ( 1 ... N ) -> N e. ZZ ) |
|
| 28 | 27 | zcnd | |- ( K e. ( 1 ... N ) -> N e. CC ) |
| 29 | 1cnd | |- ( K e. ( 1 ... N ) -> 1 e. CC ) |
|
| 30 | 28 22 29 | subsubd | |- ( K e. ( 1 ... N ) -> ( N - ( K - 1 ) ) = ( ( N - K ) + 1 ) ) |
| 31 | 30 | fveq2d | |- ( K e. ( 1 ... N ) -> ( ! ` ( N - ( K - 1 ) ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) |
| 32 | 31 | oveq1d | |- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) |
| 33 | 32 | oveq2d | |- ( K e. ( 1 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) = ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
| 34 | 30 | oveq1d | |- ( K e. ( 1 ... N ) -> ( ( N - ( K - 1 ) ) / K ) = ( ( ( N - K ) + 1 ) / K ) ) |
| 35 | 33 34 | oveq12d | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) ) |
| 36 | facp1 | |- ( ( N - K ) e. NN0 -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
|
| 37 | 7 36 | syl | |- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
| 38 | 37 | eqcomd | |- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) |
| 39 | facnn2 | |- ( K e. NN -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
|
| 40 | 13 39 | syl | |- ( K e. ( 1 ... N ) -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
| 41 | 38 40 | oveq12d | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) x. ( ! ` K ) ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ( ! ` ( K - 1 ) ) x. K ) ) ) |
| 42 | 7 | faccld | |- ( K e. ( 1 ... N ) -> ( ! ` ( N - K ) ) e. NN ) |
| 43 | 42 | nncnd | |- ( K e. ( 1 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
| 44 | 13 | nnnn0d | |- ( K e. ( 1 ... N ) -> K e. NN0 ) |
| 45 | 44 | faccld | |- ( K e. ( 1 ... N ) -> ( ! ` K ) e. NN ) |
| 46 | 45 | nncnd | |- ( K e. ( 1 ... N ) -> ( ! ` K ) e. CC ) |
| 47 | 43 46 10 | mul32d | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) x. ( ! ` K ) ) ) |
| 48 | 12 | nncnd | |- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) e. CC ) |
| 49 | 16 | nncnd | |- ( K e. ( 1 ... N ) -> ( ! ` ( K - 1 ) ) e. CC ) |
| 50 | 48 49 22 | mulassd | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ( ! ` ( K - 1 ) ) x. K ) ) ) |
| 51 | 41 47 50 | 3eqtr4d | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) |
| 52 | 51 | oveq2d | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
| 53 | 26 35 52 | 3eqtr4d | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) ) |
| 54 | 6 10 | mulcomd | |- ( K e. ( 1 ... N ) -> ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) = ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) ) |
| 55 | 42 45 | nnmulcld | |- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 56 | 55 | nncnd | |- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC ) |
| 57 | 56 10 | mulcomd | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 58 | 54 57 | oveq12d | |- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) = ( ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) / ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 59 | 55 | nnne0d | |- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) |
| 60 | 9 | nnne0d | |- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) =/= 0 ) |
| 61 | 6 56 10 59 60 | divcan5d | |- ( K e. ( 1 ... N ) -> ( ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) / ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 62 | 53 58 61 | 3eqtrrd | |- ( K e. ( 1 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |
| 63 | fz1ssfz0 | |- ( 1 ... N ) C_ ( 0 ... N ) |
|
| 64 | 63 | sseli | |- ( K e. ( 1 ... N ) -> K e. ( 0 ... N ) ) |
| 65 | bcval2 | |- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
|
| 66 | 64 65 | syl | |- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 67 | ax-1cn | |- 1 e. CC |
|
| 68 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 69 | 28 67 68 | sylancl | |- ( K e. ( 1 ... N ) -> ( ( N - 1 ) + 1 ) = N ) |
| 70 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 71 | uzid | |- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
|
| 72 | peano2uz | |- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
|
| 73 | 27 70 71 72 | 4syl | |- ( K e. ( 1 ... N ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 74 | 69 73 | eqeltrrd | |- ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 75 | fzss2 | |- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
|
| 76 | 74 75 | syl | |- ( K e. ( 1 ... N ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 77 | elfzmlbm | |- ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
|
| 78 | 76 77 | sseldd | |- ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... N ) ) |
| 79 | bcval2 | |- ( ( K - 1 ) e. ( 0 ... N ) -> ( N _C ( K - 1 ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
|
| 80 | 78 79 | syl | |- ( K e. ( 1 ... N ) -> ( N _C ( K - 1 ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
| 81 | 80 | oveq1d | |- ( K e. ( 1 ... N ) -> ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |
| 82 | 62 66 81 | 3eqtr4d | |- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |