This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The proportion of one binomial coefficient to another with N increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcp1n | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz3nn0 | |- ( K e. ( 0 ... N ) -> N e. NN0 ) |
|
| 2 | facp1 | |- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
|
| 3 | 1 2 | syl | |- ( K e. ( 0 ... N ) -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 4 | fznn0sub | |- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
|
| 5 | facp1 | |- ( ( N - K ) e. NN0 -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
|
| 6 | 4 5 | syl | |- ( K e. ( 0 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
| 7 | 1 | nn0cnd | |- ( K e. ( 0 ... N ) -> N e. CC ) |
| 8 | 1cnd | |- ( K e. ( 0 ... N ) -> 1 e. CC ) |
|
| 9 | elfznn0 | |- ( K e. ( 0 ... N ) -> K e. NN0 ) |
|
| 10 | 9 | nn0cnd | |- ( K e. ( 0 ... N ) -> K e. CC ) |
| 11 | 7 8 10 | addsubd | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) = ( ( N - K ) + 1 ) ) |
| 12 | 11 | fveq2d | |- ( K e. ( 0 ... N ) -> ( ! ` ( ( N + 1 ) - K ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) |
| 13 | 11 | oveq2d | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ( N + 1 ) - K ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
| 14 | 6 12 13 | 3eqtr4d | |- ( K e. ( 0 ... N ) -> ( ! ` ( ( N + 1 ) - K ) ) = ( ( ! ` ( N - K ) ) x. ( ( N + 1 ) - K ) ) ) |
| 15 | 14 | oveq1d | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) = ( ( ( ! ` ( N - K ) ) x. ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) |
| 16 | 4 | faccld | |- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. NN ) |
| 17 | 16 | nncnd | |- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
| 18 | nn0p1nn | |- ( ( N - K ) e. NN0 -> ( ( N - K ) + 1 ) e. NN ) |
|
| 19 | 4 18 | syl | |- ( K e. ( 0 ... N ) -> ( ( N - K ) + 1 ) e. NN ) |
| 20 | 11 19 | eqeltrd | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. NN ) |
| 21 | 20 | nncnd | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. CC ) |
| 22 | 9 | faccld | |- ( K e. ( 0 ... N ) -> ( ! ` K ) e. NN ) |
| 23 | 22 | nncnd | |- ( K e. ( 0 ... N ) -> ( ! ` K ) e. CC ) |
| 24 | 17 21 23 | mul32d | |- ( K e. ( 0 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) = ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) |
| 25 | 15 24 | eqtrd | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) = ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) |
| 26 | 3 25 | oveq12d | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( N + 1 ) ) / ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) ) |
| 27 | 1 | faccld | |- ( K e. ( 0 ... N ) -> ( ! ` N ) e. NN ) |
| 28 | 27 | nncnd | |- ( K e. ( 0 ... N ) -> ( ! ` N ) e. CC ) |
| 29 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 30 | 1 29 | syl | |- ( K e. ( 0 ... N ) -> ( N + 1 ) e. NN ) |
| 31 | 30 | nncnd | |- ( K e. ( 0 ... N ) -> ( N + 1 ) e. CC ) |
| 32 | 16 22 | nnmulcld | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 33 | nncn | |- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC ) |
|
| 34 | nnne0 | |- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) |
|
| 35 | 33 34 | jca | |- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) ) |
| 36 | 32 35 | syl | |- ( K e. ( 0 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) ) |
| 37 | 20 | nnne0d | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) =/= 0 ) |
| 38 | 21 37 | jca | |- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - K ) e. CC /\ ( ( N + 1 ) - K ) =/= 0 ) ) |
| 39 | divmuldiv | |- ( ( ( ( ! ` N ) e. CC /\ ( N + 1 ) e. CC ) /\ ( ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) /\ ( ( ( N + 1 ) - K ) e. CC /\ ( ( N + 1 ) - K ) =/= 0 ) ) ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) ) |
|
| 40 | 28 31 36 38 39 | syl22anc | |- ( K e. ( 0 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) ) |
| 41 | 26 40 | eqtr4d | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( N + 1 ) ) / ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
| 42 | fzelp1 | |- ( K e. ( 0 ... N ) -> K e. ( 0 ... ( N + 1 ) ) ) |
|
| 43 | bcval2 | |- ( K e. ( 0 ... ( N + 1 ) ) -> ( ( N + 1 ) _C K ) = ( ( ! ` ( N + 1 ) ) / ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) ) |
|
| 44 | 42 43 | syl | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( ! ` ( N + 1 ) ) / ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) ) |
| 45 | bcval2 | |- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
|
| 46 | 45 | oveq1d | |- ( K e. ( 0 ... N ) -> ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
| 47 | 41 44 46 | 3eqtr4d | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |