This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzm1 | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( N = M -> ( N ... N ) = ( M ... N ) ) |
|
| 2 | 1 | eleq2d | |- ( N = M -> ( K e. ( N ... N ) <-> K e. ( M ... N ) ) ) |
| 3 | elfz1eq | |- ( K e. ( N ... N ) -> K = N ) |
|
| 4 | 2 3 | biimtrrdi | |- ( N = M -> ( K e. ( M ... N ) -> K = N ) ) |
| 5 | olc | |- ( K = N -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) |
|
| 6 | 4 5 | syl6 | |- ( N = M -> ( K e. ( M ... N ) -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
| 7 | 6 | adantl | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... N ) -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
| 8 | noel | |- -. K e. (/) |
|
| 9 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 10 | 9 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> N e. ZZ ) |
| 11 | 10 | zred | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> N e. RR ) |
| 12 | 11 | ltm1d | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) < N ) |
| 13 | breq2 | |- ( N = M -> ( ( N - 1 ) < N <-> ( N - 1 ) < M ) ) |
|
| 14 | 13 | adantl | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( N - 1 ) < N <-> ( N - 1 ) < M ) ) |
| 15 | 12 14 | mpbid | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) < M ) |
| 16 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 17 | 1zzd | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> 1 e. ZZ ) |
|
| 18 | 10 17 | zsubcld | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) e. ZZ ) |
| 19 | fzn | |- ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) |
|
| 20 | 16 18 19 | syl2an2r | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) |
| 21 | 15 20 | mpbid | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( M ... ( N - 1 ) ) = (/) ) |
| 22 | 21 | eleq2d | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... ( N - 1 ) ) <-> K e. (/) ) ) |
| 23 | 8 22 | mtbiri | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> -. K e. ( M ... ( N - 1 ) ) ) |
| 24 | 23 | pm2.21d | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... ( N - 1 ) ) -> K e. ( M ... N ) ) ) |
| 25 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 26 | 25 | ad2antrr | |- ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> N e. ( M ... N ) ) |
| 27 | eleq1 | |- ( K = N -> ( K e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
|
| 28 | 27 | adantl | |- ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> ( K e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
| 29 | 26 28 | mpbird | |- ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> K e. ( M ... N ) ) |
| 30 | 29 | ex | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K = N -> K e. ( M ... N ) ) ) |
| 31 | 24 30 | jaod | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( K e. ( M ... ( N - 1 ) ) \/ K = N ) -> K e. ( M ... N ) ) ) |
| 32 | 7 31 | impbid | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
| 33 | elfzp1 | |- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) ) ) |
|
| 34 | 33 | adantl | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) ) ) |
| 35 | 9 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> N e. ZZ ) |
| 36 | 35 | zcnd | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> N e. CC ) |
| 37 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 38 | 36 37 | syl | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 39 | 38 | oveq2d | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
| 40 | 39 | eleq2d | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> K e. ( M ... N ) ) ) |
| 41 | 38 | eqeq2d | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K = ( ( N - 1 ) + 1 ) <-> K = N ) ) |
| 42 | 41 | orbi2d | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
| 43 | 34 40 42 | 3bitr3d | |- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
| 44 | uzm1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
|
| 45 | 32 43 44 | mpjaodan | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |