This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 .) (Contributed by Mario Carneiro, 10-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcrpcl | |- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcval2 | |- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
|
| 2 | elfz3nn0 | |- ( K e. ( 0 ... N ) -> N e. NN0 ) |
|
| 3 | 2 | faccld | |- ( K e. ( 0 ... N ) -> ( ! ` N ) e. NN ) |
| 4 | fznn0sub | |- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
|
| 5 | elfznn0 | |- ( K e. ( 0 ... N ) -> K e. NN0 ) |
|
| 6 | faccl | |- ( ( N - K ) e. NN0 -> ( ! ` ( N - K ) ) e. NN ) |
|
| 7 | faccl | |- ( K e. NN0 -> ( ! ` K ) e. NN ) |
|
| 8 | nnmulcl | |- ( ( ( ! ` ( N - K ) ) e. NN /\ ( ! ` K ) e. NN ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( ( N - K ) e. NN0 /\ K e. NN0 ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 10 | 4 5 9 | syl2anc | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 11 | nnrp | |- ( ( ! ` N ) e. NN -> ( ! ` N ) e. RR+ ) |
|
| 12 | nnrp | |- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. RR+ ) |
|
| 13 | rpdivcl | |- ( ( ( ! ` N ) e. RR+ /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. RR+ ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( ( ! ` N ) e. NN /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
| 15 | 3 10 14 | syl2anc | |- ( K e. ( 0 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
| 16 | 1 15 | eqeltrd | |- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |