This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logeftb | |- ( ( A e. CC /\ A =/= 0 /\ B e. ran log ) -> ( ( log ` A ) = B <-> ( exp ` B ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
|
| 2 | dflog2 | |- log = `' ( exp |` ran log ) |
|
| 3 | 2 | fveq1i | |- ( log ` A ) = ( `' ( exp |` ran log ) ` A ) |
| 4 | 3 | eqeq1i | |- ( ( log ` A ) = B <-> ( `' ( exp |` ran log ) ` A ) = B ) |
| 5 | fvres | |- ( B e. ran log -> ( ( exp |` ran log ) ` B ) = ( exp ` B ) ) |
|
| 6 | 5 | eqeq1d | |- ( B e. ran log -> ( ( ( exp |` ran log ) ` B ) = A <-> ( exp ` B ) = A ) ) |
| 7 | 6 | adantr | |- ( ( B e. ran log /\ A e. ( CC \ { 0 } ) ) -> ( ( ( exp |` ran log ) ` B ) = A <-> ( exp ` B ) = A ) ) |
| 8 | eff1o2 | |- ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) |
|
| 9 | f1ocnvfvb | |- ( ( ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) /\ B e. ran log /\ A e. ( CC \ { 0 } ) ) -> ( ( ( exp |` ran log ) ` B ) = A <-> ( `' ( exp |` ran log ) ` A ) = B ) ) |
|
| 10 | 8 9 | mp3an1 | |- ( ( B e. ran log /\ A e. ( CC \ { 0 } ) ) -> ( ( ( exp |` ran log ) ` B ) = A <-> ( `' ( exp |` ran log ) ` A ) = B ) ) |
| 11 | 7 10 | bitr3d | |- ( ( B e. ran log /\ A e. ( CC \ { 0 } ) ) -> ( ( exp ` B ) = A <-> ( `' ( exp |` ran log ) ` A ) = B ) ) |
| 12 | 11 | ancoms | |- ( ( A e. ( CC \ { 0 } ) /\ B e. ran log ) -> ( ( exp ` B ) = A <-> ( `' ( exp |` ran log ) ` A ) = B ) ) |
| 13 | 4 12 | bitr4id | |- ( ( A e. ( CC \ { 0 } ) /\ B e. ran log ) -> ( ( log ` A ) = B <-> ( exp ` B ) = A ) ) |
| 14 | 1 13 | sylanbr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ran log ) -> ( ( log ` A ) = B <-> ( exp ` B ) = A ) ) |
| 15 | 14 | 3impa | |- ( ( A e. CC /\ A =/= 0 /\ B e. ran log ) -> ( ( log ` A ) = B <-> ( exp ` B ) = A ) ) |