This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulneg2 | |- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = -u ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulneg1 | |- ( ( B e. CC /\ A e. CC ) -> ( -u B x. A ) = -u ( B x. A ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> ( -u B x. A ) = -u ( B x. A ) ) |
| 3 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 4 | mulcom | |- ( ( A e. CC /\ -u B e. CC ) -> ( A x. -u B ) = ( -u B x. A ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = ( -u B x. A ) ) |
| 6 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 7 | 6 | negeqd | |- ( ( A e. CC /\ B e. CC ) -> -u ( A x. B ) = -u ( B x. A ) ) |
| 8 | 2 5 7 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = -u ( A x. B ) ) |