This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number has imaginary part equal to _pi , then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lognegb | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logneg | |- ( -u A e. RR+ -> ( log ` -u -u A ) = ( ( log ` -u A ) + ( _i x. _pi ) ) ) |
|
| 2 | 1 | fveq2d | |- ( -u A e. RR+ -> ( Im ` ( log ` -u -u A ) ) = ( Im ` ( ( log ` -u A ) + ( _i x. _pi ) ) ) ) |
| 3 | relogcl | |- ( -u A e. RR+ -> ( log ` -u A ) e. RR ) |
|
| 4 | pire | |- _pi e. RR |
|
| 5 | crim | |- ( ( ( log ` -u A ) e. RR /\ _pi e. RR ) -> ( Im ` ( ( log ` -u A ) + ( _i x. _pi ) ) ) = _pi ) |
|
| 6 | 3 4 5 | sylancl | |- ( -u A e. RR+ -> ( Im ` ( ( log ` -u A ) + ( _i x. _pi ) ) ) = _pi ) |
| 7 | 2 6 | eqtrd | |- ( -u A e. RR+ -> ( Im ` ( log ` -u -u A ) ) = _pi ) |
| 8 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
| 9 | 8 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> -u -u A = A ) |
| 10 | 9 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` -u -u A ) = ( log ` A ) ) |
| 11 | 10 | fveqeq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` -u -u A ) ) = _pi <-> ( Im ` ( log ` A ) ) = _pi ) ) |
| 12 | 7 11 | imbitrid | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u A e. RR+ -> ( Im ` ( log ` A ) ) = _pi ) ) |
| 13 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 14 | 13 | replimd | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) = ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 15 | 14 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = ( exp ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 16 | eflog | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
|
| 17 | 13 | recld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
| 18 | 17 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. CC ) |
| 19 | ax-icn | |- _i e. CC |
|
| 20 | 13 | imcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 21 | 20 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
| 22 | mulcl | |- ( ( _i e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
|
| 23 | 19 21 22 | sylancr | |- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
| 24 | efadd | |- ( ( ( Re ` ( log ` A ) ) e. CC /\ ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) -> ( exp ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) = ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
|
| 25 | 18 23 24 | syl2anc | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) = ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 26 | 15 16 25 | 3eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 27 | oveq2 | |- ( ( Im ` ( log ` A ) ) = _pi -> ( _i x. ( Im ` ( log ` A ) ) ) = ( _i x. _pi ) ) |
|
| 28 | 27 | fveq2d | |- ( ( Im ` ( log ` A ) ) = _pi -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( exp ` ( _i x. _pi ) ) ) |
| 29 | efipi | |- ( exp ` ( _i x. _pi ) ) = -u 1 |
|
| 30 | 28 29 | eqtrdi | |- ( ( Im ` ( log ` A ) ) = _pi -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = -u 1 ) |
| 31 | 30 | oveq2d | |- ( ( Im ` ( log ` A ) ) = _pi -> ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) ) |
| 32 | 31 | eqeq2d | |- ( ( Im ` ( log ` A ) ) = _pi -> ( A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) <-> A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) ) ) |
| 33 | 26 32 | syl5ibcom | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` A ) ) = _pi -> A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) ) ) |
| 34 | 17 | rpefcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) e. RR+ ) |
| 35 | 34 | rpcnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) e. CC ) |
| 36 | neg1cn | |- -u 1 e. CC |
|
| 37 | mulcom | |- ( ( ( exp ` ( Re ` ( log ` A ) ) ) e. CC /\ -u 1 e. CC ) -> ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = ( -u 1 x. ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
|
| 38 | 35 36 37 | sylancl | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = ( -u 1 x. ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
| 39 | 35 | mulm1d | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u 1 x. ( exp ` ( Re ` ( log ` A ) ) ) ) = -u ( exp ` ( Re ` ( log ` A ) ) ) ) |
| 40 | 38 39 | eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = -u ( exp ` ( Re ` ( log ` A ) ) ) ) |
| 41 | 40 | negeqd | |- ( ( A e. CC /\ A =/= 0 ) -> -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = -u -u ( exp ` ( Re ` ( log ` A ) ) ) ) |
| 42 | 35 | negnegd | |- ( ( A e. CC /\ A =/= 0 ) -> -u -u ( exp ` ( Re ` ( log ` A ) ) ) = ( exp ` ( Re ` ( log ` A ) ) ) ) |
| 43 | 41 42 | eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = ( exp ` ( Re ` ( log ` A ) ) ) ) |
| 44 | 43 34 | eqeltrd | |- ( ( A e. CC /\ A =/= 0 ) -> -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) e. RR+ ) |
| 45 | negeq | |- ( A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) -> -u A = -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) ) |
|
| 46 | 45 | eleq1d | |- ( A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) -> ( -u A e. RR+ <-> -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) e. RR+ ) ) |
| 47 | 44 46 | syl5ibrcom | |- ( ( A e. CC /\ A =/= 0 ) -> ( A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) -> -u A e. RR+ ) ) |
| 48 | 33 47 | syld | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` A ) ) = _pi -> -u A e. RR+ ) ) |
| 49 | 12 48 | impbid | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) |