This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative symmetry relation of the arccosine. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acosneg | |- ( A e. CC -> ( arccos ` -u A ) = ( _pi - ( arccos ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | halfcl | |- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
|
| 3 | 1 2 | ax-mp | |- ( _pi / 2 ) e. CC |
| 4 | asincl | |- ( A e. CC -> ( arcsin ` A ) e. CC ) |
|
| 5 | subneg | |- ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` A ) e. CC ) -> ( ( _pi / 2 ) - -u ( arcsin ` A ) ) = ( ( _pi / 2 ) + ( arcsin ` A ) ) ) |
|
| 6 | 3 4 5 | sylancr | |- ( A e. CC -> ( ( _pi / 2 ) - -u ( arcsin ` A ) ) = ( ( _pi / 2 ) + ( arcsin ` A ) ) ) |
| 7 | asinneg | |- ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |
|
| 8 | 7 | oveq2d | |- ( A e. CC -> ( ( _pi / 2 ) - ( arcsin ` -u A ) ) = ( ( _pi / 2 ) - -u ( arcsin ` A ) ) ) |
| 9 | 1 | a1i | |- ( A e. CC -> _pi e. CC ) |
| 10 | 3 | a1i | |- ( A e. CC -> ( _pi / 2 ) e. CC ) |
| 11 | 9 10 4 | subsubd | |- ( A e. CC -> ( _pi - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( _pi - ( _pi / 2 ) ) + ( arcsin ` A ) ) ) |
| 12 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 13 | 1 3 3 12 | subaddrii | |- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 14 | 13 | oveq1i | |- ( ( _pi - ( _pi / 2 ) ) + ( arcsin ` A ) ) = ( ( _pi / 2 ) + ( arcsin ` A ) ) |
| 15 | 11 14 | eqtrdi | |- ( A e. CC -> ( _pi - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( _pi / 2 ) + ( arcsin ` A ) ) ) |
| 16 | 6 8 15 | 3eqtr4d | |- ( A e. CC -> ( ( _pi / 2 ) - ( arcsin ` -u A ) ) = ( _pi - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
| 17 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 18 | acosval | |- ( -u A e. CC -> ( arccos ` -u A ) = ( ( _pi / 2 ) - ( arcsin ` -u A ) ) ) |
|
| 19 | 17 18 | syl | |- ( A e. CC -> ( arccos ` -u A ) = ( ( _pi / 2 ) - ( arcsin ` -u A ) ) ) |
| 20 | acosval | |- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
|
| 21 | 20 | oveq2d | |- ( A e. CC -> ( _pi - ( arccos ` A ) ) = ( _pi - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
| 22 | 16 19 21 | 3eqtr4d | |- ( A e. CC -> ( arccos ` -u A ) = ( _pi - ( arccos ` A ) ) ) |