This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument to the logarithm in df-asin is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinlem | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 6 | subcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
|
| 7 | 4 5 6 | sylancr | |- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 8 | 7 | sqrtcld | |- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 9 | 3 8 | subnegd | |- ( A e. CC -> ( ( _i x. A ) - -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 10 | 8 | negcld | |- ( A e. CC -> -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 11 | 0ne1 | |- 0 =/= 1 |
|
| 12 | 0cnd | |- ( A e. CC -> 0 e. CC ) |
|
| 13 | 1cnd | |- ( A e. CC -> 1 e. CC ) |
|
| 14 | subcan2 | |- ( ( 0 e. CC /\ 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 0 - ( A ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) <-> 0 = 1 ) ) |
|
| 15 | 14 | necon3bid | |- ( ( 0 e. CC /\ 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 0 - ( A ^ 2 ) ) =/= ( 1 - ( A ^ 2 ) ) <-> 0 =/= 1 ) ) |
| 16 | 12 13 5 15 | syl3anc | |- ( A e. CC -> ( ( 0 - ( A ^ 2 ) ) =/= ( 1 - ( A ^ 2 ) ) <-> 0 =/= 1 ) ) |
| 17 | 11 16 | mpbiri | |- ( A e. CC -> ( 0 - ( A ^ 2 ) ) =/= ( 1 - ( A ^ 2 ) ) ) |
| 18 | sqmul | |- ( ( _i e. CC /\ A e. CC ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
|
| 19 | 1 18 | mpan | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 20 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 21 | 20 | oveq1i | |- ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) |
| 22 | 5 | mulm1d | |- ( A e. CC -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 23 | 21 22 | eqtrid | |- ( A e. CC -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 24 | 19 23 | eqtrd | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) |
| 25 | df-neg | |- -u ( A ^ 2 ) = ( 0 - ( A ^ 2 ) ) |
|
| 26 | 24 25 | eqtrdi | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( 0 - ( A ^ 2 ) ) ) |
| 27 | sqneg | |- ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC -> ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) ) |
|
| 28 | 8 27 | syl | |- ( A e. CC -> ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) ) |
| 29 | 7 | sqsqrtd | |- ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( 1 - ( A ^ 2 ) ) ) |
| 30 | 28 29 | eqtrd | |- ( A e. CC -> ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( 1 - ( A ^ 2 ) ) ) |
| 31 | 17 26 30 | 3netr4d | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) =/= ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) ) |
| 32 | oveq1 | |- ( ( _i x. A ) = -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) -> ( ( _i x. A ) ^ 2 ) = ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) ) |
|
| 33 | 32 | necon3i | |- ( ( ( _i x. A ) ^ 2 ) =/= ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) -> ( _i x. A ) =/= -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 34 | 31 33 | syl | |- ( A e. CC -> ( _i x. A ) =/= -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 35 | 3 10 34 | subne0d | |- ( A e. CC -> ( ( _i x. A ) - -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |
| 36 | 9 35 | eqnetrrd | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |