This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument to the logarithm in df-asin has the property that replacing A with -u A in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinlem2 | |- ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 6 | subcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
|
| 7 | 4 5 6 | sylancr | |- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 8 | 7 | sqrtcld | |- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 9 | 3 8 | addcomd | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) ) |
| 10 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 11 | 1 10 | mpan | |- ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 12 | sqneg | |- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
|
| 13 | 12 | oveq2d | |- ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) ) |
| 14 | 13 | fveq2d | |- ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 15 | 11 14 | oveq12d | |- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 16 | 3 | negcld | |- ( A e. CC -> -u ( _i x. A ) e. CC ) |
| 17 | 16 8 | addcomd | |- ( A e. CC -> ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) ) |
| 18 | 8 3 | negsubd | |- ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) |
| 19 | 15 17 18 | 3eqtrd | |- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) |
| 20 | 9 19 | oveq12d | |- ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) x. ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) |
| 21 | 7 | sqsqrtd | |- ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( 1 - ( A ^ 2 ) ) ) |
| 22 | sqmul | |- ( ( _i e. CC /\ A e. CC ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
|
| 23 | 1 22 | mpan | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 24 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 25 | 24 | oveq1i | |- ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) |
| 26 | 5 | mulm1d | |- ( A e. CC -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 27 | 25 26 | eqtrid | |- ( A e. CC -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 28 | 23 27 | eqtrd | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) |
| 29 | 21 28 | oveq12d | |- ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( 1 - ( A ^ 2 ) ) - -u ( A ^ 2 ) ) ) |
| 30 | subsq | |- ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC /\ ( _i x. A ) e. CC ) -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) x. ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) |
|
| 31 | 8 3 30 | syl2anc | |- ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) x. ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) |
| 32 | 7 5 | subnegd | |- ( A e. CC -> ( ( 1 - ( A ^ 2 ) ) - -u ( A ^ 2 ) ) = ( ( 1 - ( A ^ 2 ) ) + ( A ^ 2 ) ) ) |
| 33 | 29 31 32 | 3eqtr3d | |- ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) x. ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) = ( ( 1 - ( A ^ 2 ) ) + ( A ^ 2 ) ) ) |
| 34 | npcan | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 1 - ( A ^ 2 ) ) + ( A ^ 2 ) ) = 1 ) |
|
| 35 | 4 5 34 | sylancr | |- ( A e. CC -> ( ( 1 - ( A ^ 2 ) ) + ( A ^ 2 ) ) = 1 ) |
| 36 | 20 33 35 | 3eqtrd | |- ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) |