This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eflog | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflog2 | |- log = `' ( exp |` ran log ) |
|
| 2 | 1 | fveq1i | |- ( log ` A ) = ( `' ( exp |` ran log ) ` A ) |
| 3 | 2 | fveq2i | |- ( ( exp |` ran log ) ` ( log ` A ) ) = ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) |
| 4 | logrncl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log ) |
|
| 5 | 4 | fvresd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp |` ran log ) ` ( log ` A ) ) = ( exp ` ( log ` A ) ) ) |
| 6 | eldifsn | |- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
|
| 7 | eff1o2 | |- ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) |
|
| 8 | f1ocnvfv2 | |- ( ( ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) /\ A e. ( CC \ { 0 } ) ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A ) |
|
| 9 | 7 8 | mpan | |- ( A e. ( CC \ { 0 } ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A ) |
| 10 | 6 9 | sylbir | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A ) |
| 11 | 3 5 10 | 3eqtr3a | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |