This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | |- O = ( oppR ` R ) |
|
| Assertion | opprrng | |- ( R e. Rng -> O e. Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | |- O = ( oppR ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 1 2 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 4 | 3 | a1i | |- ( R e. Rng -> ( Base ` R ) = ( Base ` O ) ) |
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | 1 5 | oppradd | |- ( +g ` R ) = ( +g ` O ) |
| 7 | 6 | a1i | |- ( R e. Rng -> ( +g ` R ) = ( +g ` O ) ) |
| 8 | eqidd | |- ( R e. Rng -> ( .r ` O ) = ( .r ` O ) ) |
|
| 9 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 10 | 3 6 | ablprop | |- ( R e. Abel <-> O e. Abel ) |
| 11 | 9 10 | sylib | |- ( R e. Rng -> O e. Abel ) |
| 12 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 13 | eqid | |- ( .r ` O ) = ( .r ` O ) |
|
| 14 | 2 12 1 13 | opprmul | |- ( x ( .r ` O ) y ) = ( y ( .r ` R ) x ) |
| 15 | 2 12 | rngcl | |- ( ( R e. Rng /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( y ( .r ` R ) x ) e. ( Base ` R ) ) |
| 16 | 15 | 3com23 | |- ( ( R e. Rng /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( y ( .r ` R ) x ) e. ( Base ` R ) ) |
| 17 | 14 16 | eqeltrid | |- ( ( R e. Rng /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` O ) y ) e. ( Base ` R ) ) |
| 18 | simpl | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> R e. Rng ) |
|
| 19 | simpr3 | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> z e. ( Base ` R ) ) |
|
| 20 | simpr2 | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> y e. ( Base ` R ) ) |
|
| 21 | simpr1 | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> x e. ( Base ` R ) ) |
|
| 22 | 2 12 | rngass | |- ( ( R e. Rng /\ ( z e. ( Base ` R ) /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) ) -> ( ( z ( .r ` R ) y ) ( .r ` R ) x ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) ) |
| 23 | 18 19 20 21 22 | syl13anc | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( z ( .r ` R ) y ) ( .r ` R ) x ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) ) |
| 24 | 23 | eqcomd | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( y ( .r ` R ) x ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) ) |
| 25 | 14 | oveq1i | |- ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( ( y ( .r ` R ) x ) ( .r ` O ) z ) |
| 26 | 2 12 1 13 | opprmul | |- ( ( y ( .r ` R ) x ) ( .r ` O ) z ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) |
| 27 | 25 26 | eqtri | |- ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) |
| 28 | 2 12 1 13 | opprmul | |- ( y ( .r ` O ) z ) = ( z ( .r ` R ) y ) |
| 29 | 28 | oveq2i | |- ( x ( .r ` O ) ( y ( .r ` O ) z ) ) = ( x ( .r ` O ) ( z ( .r ` R ) y ) ) |
| 30 | 2 12 1 13 | opprmul | |- ( x ( .r ` O ) ( z ( .r ` R ) y ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) |
| 31 | 29 30 | eqtri | |- ( x ( .r ` O ) ( y ( .r ` O ) z ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) |
| 32 | 24 27 31 | 3eqtr4g | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( x ( .r ` O ) ( y ( .r ` O ) z ) ) ) |
| 33 | 2 5 12 | rngdir | |- ( ( R e. Rng /\ ( y e. ( Base ` R ) /\ z e. ( Base ` R ) /\ x e. ( Base ` R ) ) ) -> ( ( y ( +g ` R ) z ) ( .r ` R ) x ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) ) |
| 34 | 18 20 19 21 33 | syl13anc | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( y ( +g ` R ) z ) ( .r ` R ) x ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) ) |
| 35 | 2 12 1 13 | opprmul | |- ( x ( .r ` O ) ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) ( .r ` R ) x ) |
| 36 | 2 12 1 13 | opprmul | |- ( x ( .r ` O ) z ) = ( z ( .r ` R ) x ) |
| 37 | 14 36 | oveq12i | |- ( ( x ( .r ` O ) y ) ( +g ` R ) ( x ( .r ` O ) z ) ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) |
| 38 | 34 35 37 | 3eqtr4g | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( x ( .r ` O ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` O ) y ) ( +g ` R ) ( x ( .r ` O ) z ) ) ) |
| 39 | 2 5 12 | rngdi | |- ( ( R e. Rng /\ ( z e. ( Base ` R ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 40 | 18 19 21 20 39 | syl13anc | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 41 | 2 12 1 13 | opprmul | |- ( ( x ( +g ` R ) y ) ( .r ` O ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) |
| 42 | 36 28 | oveq12i | |- ( ( x ( .r ` O ) z ) ( +g ` R ) ( y ( .r ` O ) z ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) |
| 43 | 40 41 42 | 3eqtr4g | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) ( .r ` O ) z ) = ( ( x ( .r ` O ) z ) ( +g ` R ) ( y ( .r ` O ) z ) ) ) |
| 44 | 4 7 8 11 17 32 38 43 | isrngd | |- ( R e. Rng -> O e. Rng ) |