This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl . (Contributed by AV, 18-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlmcl.z | |- .0. = ( 0g ` R ) |
|
| rnglidlmcl.b | |- B = ( Base ` R ) |
||
| rnglidlmcl.t | |- .x. = ( .r ` R ) |
||
| rnglidlmcl.u | |- U = ( LIdeal ` R ) |
||
| Assertion | rnglidlmcl | |- ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlmcl.z | |- .0. = ( 0g ` R ) |
|
| 2 | rnglidlmcl.b | |- B = ( Base ` R ) |
|
| 3 | rnglidlmcl.t | |- .x. = ( .r ` R ) |
|
| 4 | rnglidlmcl.u | |- U = ( LIdeal ` R ) |
|
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | 4 2 5 3 | islidl | |- ( I e. U <-> ( I C_ B /\ I =/= (/) /\ A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I ) ) |
| 7 | oveq1 | |- ( x = X -> ( x .x. a ) = ( X .x. a ) ) |
|
| 8 | 7 | oveq1d | |- ( x = X -> ( ( x .x. a ) ( +g ` R ) b ) = ( ( X .x. a ) ( +g ` R ) b ) ) |
| 9 | 8 | eleq1d | |- ( x = X -> ( ( ( x .x. a ) ( +g ` R ) b ) e. I <-> ( ( X .x. a ) ( +g ` R ) b ) e. I ) ) |
| 10 | 9 | ralbidv | |- ( x = X -> ( A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I <-> A. b e. I ( ( X .x. a ) ( +g ` R ) b ) e. I ) ) |
| 11 | oveq2 | |- ( a = Y -> ( X .x. a ) = ( X .x. Y ) ) |
|
| 12 | 11 | oveq1d | |- ( a = Y -> ( ( X .x. a ) ( +g ` R ) b ) = ( ( X .x. Y ) ( +g ` R ) b ) ) |
| 13 | 12 | eleq1d | |- ( a = Y -> ( ( ( X .x. a ) ( +g ` R ) b ) e. I <-> ( ( X .x. Y ) ( +g ` R ) b ) e. I ) ) |
| 14 | 13 | ralbidv | |- ( a = Y -> ( A. b e. I ( ( X .x. a ) ( +g ` R ) b ) e. I <-> A. b e. I ( ( X .x. Y ) ( +g ` R ) b ) e. I ) ) |
| 15 | 10 14 | rspc2v | |- ( ( X e. B /\ Y e. I ) -> ( A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I -> A. b e. I ( ( X .x. Y ) ( +g ` R ) b ) e. I ) ) |
| 16 | 15 | adantl | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I -> A. b e. I ( ( X .x. Y ) ( +g ` R ) b ) e. I ) ) |
| 17 | oveq2 | |- ( b = .0. -> ( ( X .x. Y ) ( +g ` R ) b ) = ( ( X .x. Y ) ( +g ` R ) .0. ) ) |
|
| 18 | 17 | eleq1d | |- ( b = .0. -> ( ( ( X .x. Y ) ( +g ` R ) b ) e. I <-> ( ( X .x. Y ) ( +g ` R ) .0. ) e. I ) ) |
| 19 | 18 | rspcv | |- ( .0. e. I -> ( A. b e. I ( ( X .x. Y ) ( +g ` R ) b ) e. I -> ( ( X .x. Y ) ( +g ` R ) .0. ) e. I ) ) |
| 20 | 19 | adantl | |- ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) -> ( A. b e. I ( ( X .x. Y ) ( +g ` R ) b ) e. I -> ( ( X .x. Y ) ( +g ` R ) .0. ) e. I ) ) |
| 21 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 22 | 21 | 3ad2ant1 | |- ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) -> R e. Grp ) |
| 23 | 22 | adantr | |- ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) -> R e. Grp ) |
| 24 | 23 | adantr | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> R e. Grp ) |
| 25 | simpll1 | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> R e. Rng ) |
|
| 26 | simprl | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> X e. B ) |
|
| 27 | ssel | |- ( I C_ B -> ( Y e. I -> Y e. B ) ) |
|
| 28 | 27 | 3ad2ant2 | |- ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) -> ( Y e. I -> Y e. B ) ) |
| 29 | 28 | adantr | |- ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) -> ( Y e. I -> Y e. B ) ) |
| 30 | 29 | adantld | |- ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) -> ( ( X e. B /\ Y e. I ) -> Y e. B ) ) |
| 31 | 30 | imp | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> Y e. B ) |
| 32 | 2 3 | rngcl | |- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 33 | 25 26 31 32 | syl3anc | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. B ) |
| 34 | 2 5 1 24 33 | grpridd | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( ( X .x. Y ) ( +g ` R ) .0. ) = ( X .x. Y ) ) |
| 35 | 34 | eleq1d | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( ( ( X .x. Y ) ( +g ` R ) .0. ) e. I <-> ( X .x. Y ) e. I ) ) |
| 36 | 35 | biimpd | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( ( ( X .x. Y ) ( +g ` R ) .0. ) e. I -> ( X .x. Y ) e. I ) ) |
| 37 | 36 | ex | |- ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) -> ( ( X e. B /\ Y e. I ) -> ( ( ( X .x. Y ) ( +g ` R ) .0. ) e. I -> ( X .x. Y ) e. I ) ) ) |
| 38 | 20 37 | syl5d | |- ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) -> ( ( X e. B /\ Y e. I ) -> ( A. b e. I ( ( X .x. Y ) ( +g ` R ) b ) e. I -> ( X .x. Y ) e. I ) ) ) |
| 39 | 38 | imp | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( A. b e. I ( ( X .x. Y ) ( +g ` R ) b ) e. I -> ( X .x. Y ) e. I ) ) |
| 40 | 16 39 | syld | |- ( ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I -> ( X .x. Y ) e. I ) ) |
| 41 | 40 | ex | |- ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) -> ( ( X e. B /\ Y e. I ) -> ( A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I -> ( X .x. Y ) e. I ) ) ) |
| 42 | 41 | com23 | |- ( ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) /\ .0. e. I ) -> ( A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I -> ( ( X e. B /\ Y e. I ) -> ( X .x. Y ) e. I ) ) ) |
| 43 | 42 | ex | |- ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) -> ( .0. e. I -> ( A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I -> ( ( X e. B /\ Y e. I ) -> ( X .x. Y ) e. I ) ) ) ) |
| 44 | 43 | com23 | |- ( ( R e. Rng /\ I C_ B /\ I =/= (/) ) -> ( A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I -> ( .0. e. I -> ( ( X e. B /\ Y e. I ) -> ( X .x. Y ) e. I ) ) ) ) |
| 45 | 44 | 3exp | |- ( R e. Rng -> ( I C_ B -> ( I =/= (/) -> ( A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I -> ( .0. e. I -> ( ( X e. B /\ Y e. I ) -> ( X .x. Y ) e. I ) ) ) ) ) ) |
| 46 | 45 | 3impd | |- ( R e. Rng -> ( ( I C_ B /\ I =/= (/) /\ A. x e. B A. a e. I A. b e. I ( ( x .x. a ) ( +g ` R ) b ) e. I ) -> ( .0. e. I -> ( ( X e. B /\ Y e. I ) -> ( X .x. Y ) e. I ) ) ) ) |
| 47 | 6 46 | biimtrid | |- ( R e. Rng -> ( I e. U -> ( .0. e. I -> ( ( X e. B /\ Y e. I ) -> ( X .x. Y ) e. I ) ) ) ) |
| 48 | 47 | 3imp1 | |- ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |