This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprbas.1 | |- O = ( oppR ` R ) |
|
| oppr0.2 | |- .0. = ( 0g ` R ) |
||
| Assertion | oppr0 | |- .0. = ( 0g ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | |- O = ( oppR ` R ) |
|
| 2 | oppr0.2 | |- .0. = ( 0g ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 5 | 3 4 2 | grpidval | |- .0. = ( iota y ( y e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( y ( +g ` R ) x ) = x /\ ( x ( +g ` R ) y ) = x ) ) ) |
| 6 | 1 3 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 7 | 1 4 | oppradd | |- ( +g ` R ) = ( +g ` O ) |
| 8 | eqid | |- ( 0g ` O ) = ( 0g ` O ) |
|
| 9 | 6 7 8 | grpidval | |- ( 0g ` O ) = ( iota y ( y e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( y ( +g ` R ) x ) = x /\ ( x ( +g ` R ) y ) = x ) ) ) |
| 10 | 5 9 | eqtr4i | |- .0. = ( 0g ` O ) |