This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction. ( nnncan2 analog.) (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpnnncan2.b | |- B = ( Base ` G ) |
|
| grpnnncan2.m | |- .- = ( -g ` G ) |
||
| Assertion | grpnnncan2 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Z ) .- ( Y .- Z ) ) = ( X .- Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpnnncan2.b | |- B = ( Base ` G ) |
|
| 2 | grpnnncan2.m | |- .- = ( -g ` G ) |
|
| 3 | simpl | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> G e. Grp ) |
|
| 4 | simpr1 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 5 | simpr3 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 6 | 1 2 | grpsubcl | |- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( Y .- Z ) e. B ) |
| 7 | 6 | 3adant3r1 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .- Z ) e. B ) |
| 8 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 9 | 1 8 2 | grpsubsub4 | |- ( ( G e. Grp /\ ( X e. B /\ Z e. B /\ ( Y .- Z ) e. B ) ) -> ( ( X .- Z ) .- ( Y .- Z ) ) = ( X .- ( ( Y .- Z ) ( +g ` G ) Z ) ) ) |
| 10 | 3 4 5 7 9 | syl13anc | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Z ) .- ( Y .- Z ) ) = ( X .- ( ( Y .- Z ) ( +g ` G ) Z ) ) ) |
| 11 | 1 8 2 | grpnpcan | |- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( ( Y .- Z ) ( +g ` G ) Z ) = Y ) |
| 12 | 11 | 3adant3r1 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y .- Z ) ( +g ` G ) Z ) = Y ) |
| 13 | 12 | oveq2d | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .- ( ( Y .- Z ) ( +g ` G ) Z ) ) = ( X .- Y ) ) |
| 14 | 10 13 | eqtrd | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Z ) .- ( Y .- Z ) ) = ( X .- Y ) ) |