This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcl.b | |- B = ( Base ` R ) |
|
| rngcl.t | |- .x. = ( .r ` R ) |
||
| Assertion | rngcl | |- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcl.b | |- B = ( Base ` R ) |
|
| 2 | rngcl.t | |- .x. = ( .r ` R ) |
|
| 3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 4 | 3 | rngmgp | |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) |
| 5 | sgrpmgm | |- ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) |
|
| 6 | 4 5 | syl | |- ( R e. Rng -> ( mulGrp ` R ) e. Mgm ) |
| 7 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 8 | 3 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 9 | 7 8 | mgmcl | |- ( ( ( mulGrp ` R ) e. Mgm /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 10 | 6 9 | syl3an1 | |- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |