This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015) (Proof shortened by AV, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlcpblrng.x | |- X = ( Base ` R ) |
|
| 2idlcpblrng.r | |- E = ( R ~QG S ) |
||
| 2idlcpblrng.i | |- I = ( 2Ideal ` R ) |
||
| 2idlcpblrng.t | |- .x. = ( .r ` R ) |
||
| Assertion | 2idlcpbl | |- ( ( R e. Ring /\ S e. I ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlcpblrng.x | |- X = ( Base ` R ) |
|
| 2 | 2idlcpblrng.r | |- E = ( R ~QG S ) |
|
| 3 | 2idlcpblrng.i | |- I = ( 2Ideal ` R ) |
|
| 4 | 2idlcpblrng.t | |- .x. = ( .r ` R ) |
|
| 5 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 6 | 5 | adantr | |- ( ( R e. Ring /\ S e. I ) -> R e. Rng ) |
| 7 | simpr | |- ( ( R e. Ring /\ S e. I ) -> S e. I ) |
|
| 8 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 9 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 10 | eqid | |- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
|
| 11 | 8 9 10 3 | 2idlelb | |- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 12 | 11 | simplbi | |- ( S e. I -> S e. ( LIdeal ` R ) ) |
| 13 | 8 | lidlsubg | |- ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) ) |
| 14 | 12 13 | sylan2 | |- ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) ) |
| 15 | 1 2 3 4 | 2idlcpblrng | |- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |
| 16 | 6 7 14 15 | syl3anc | |- ( ( R e. Ring /\ S e. I ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |