This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring multiplication distributes over subtraction. ( subdir analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014) Generalization of ringsubdir . (Revised by AV, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngsubdi.b | |- B = ( Base ` R ) |
|
| rngsubdi.t | |- .x. = ( .r ` R ) |
||
| rngsubdi.m | |- .- = ( -g ` R ) |
||
| rngsubdi.r | |- ( ph -> R e. Rng ) |
||
| rngsubdi.x | |- ( ph -> X e. B ) |
||
| rngsubdi.y | |- ( ph -> Y e. B ) |
||
| rngsubdi.z | |- ( ph -> Z e. B ) |
||
| Assertion | rngsubdir | |- ( ph -> ( ( X .- Y ) .x. Z ) = ( ( X .x. Z ) .- ( Y .x. Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngsubdi.b | |- B = ( Base ` R ) |
|
| 2 | rngsubdi.t | |- .x. = ( .r ` R ) |
|
| 3 | rngsubdi.m | |- .- = ( -g ` R ) |
|
| 4 | rngsubdi.r | |- ( ph -> R e. Rng ) |
|
| 5 | rngsubdi.x | |- ( ph -> X e. B ) |
|
| 6 | rngsubdi.y | |- ( ph -> Y e. B ) |
|
| 7 | rngsubdi.z | |- ( ph -> Z e. B ) |
|
| 8 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 9 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 10 | 4 9 | syl | |- ( ph -> R e. Grp ) |
| 11 | 1 8 10 6 | grpinvcld | |- ( ph -> ( ( invg ` R ) ` Y ) e. B ) |
| 12 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 13 | 1 12 2 | rngdir | |- ( ( R e. Rng /\ ( X e. B /\ ( ( invg ` R ) ` Y ) e. B /\ Z e. B ) ) -> ( ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) .x. Z ) = ( ( X .x. Z ) ( +g ` R ) ( ( ( invg ` R ) ` Y ) .x. Z ) ) ) |
| 14 | 4 5 11 7 13 | syl13anc | |- ( ph -> ( ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) .x. Z ) = ( ( X .x. Z ) ( +g ` R ) ( ( ( invg ` R ) ` Y ) .x. Z ) ) ) |
| 15 | 1 2 8 4 6 7 | rngmneg1 | |- ( ph -> ( ( ( invg ` R ) ` Y ) .x. Z ) = ( ( invg ` R ) ` ( Y .x. Z ) ) ) |
| 16 | 15 | oveq2d | |- ( ph -> ( ( X .x. Z ) ( +g ` R ) ( ( ( invg ` R ) ` Y ) .x. Z ) ) = ( ( X .x. Z ) ( +g ` R ) ( ( invg ` R ) ` ( Y .x. Z ) ) ) ) |
| 17 | 14 16 | eqtrd | |- ( ph -> ( ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) .x. Z ) = ( ( X .x. Z ) ( +g ` R ) ( ( invg ` R ) ` ( Y .x. Z ) ) ) ) |
| 18 | 1 12 8 3 | grpsubval | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) ) |
| 19 | 5 6 18 | syl2anc | |- ( ph -> ( X .- Y ) = ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) ) |
| 20 | 19 | oveq1d | |- ( ph -> ( ( X .- Y ) .x. Z ) = ( ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) .x. Z ) ) |
| 21 | 1 2 | rngcl | |- ( ( R e. Rng /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
| 22 | 4 5 7 21 | syl3anc | |- ( ph -> ( X .x. Z ) e. B ) |
| 23 | 1 2 | rngcl | |- ( ( R e. Rng /\ Y e. B /\ Z e. B ) -> ( Y .x. Z ) e. B ) |
| 24 | 4 6 7 23 | syl3anc | |- ( ph -> ( Y .x. Z ) e. B ) |
| 25 | 1 12 8 3 | grpsubval | |- ( ( ( X .x. Z ) e. B /\ ( Y .x. Z ) e. B ) -> ( ( X .x. Z ) .- ( Y .x. Z ) ) = ( ( X .x. Z ) ( +g ` R ) ( ( invg ` R ) ` ( Y .x. Z ) ) ) ) |
| 26 | 22 24 25 | syl2anc | |- ( ph -> ( ( X .x. Z ) .- ( Y .x. Z ) ) = ( ( X .x. Z ) ( +g ` R ) ( ( invg ` R ) ` ( Y .x. Z ) ) ) ) |
| 27 | 17 20 26 | 3eqtr4d | |- ( ph -> ( ( X .- Y ) .x. Z ) = ( ( X .x. Z ) .- ( Y .x. Z ) ) ) |