This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zringlpir . All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Proof shortened by AV, 27-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zringlpirlem.i | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) | |
| zringlpirlem.n0 | ⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) | ||
| zringlpirlem.g | ⊢ 𝐺 = inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) | ||
| zringlpirlem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| Assertion | zringlpirlem3 | ⊢ ( 𝜑 → 𝐺 ∥ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringlpirlem.i | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) | |
| 2 | zringlpirlem.n0 | ⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) | |
| 3 | zringlpirlem.g | ⊢ 𝐺 = inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) | |
| 4 | zringlpirlem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 5 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 6 | eqid | ⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) | |
| 7 | 5 6 | lidlss | ⊢ ( 𝐼 ∈ ( LIdeal ‘ ℤring ) → 𝐼 ⊆ ℤ ) |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝐼 ⊆ ℤ ) |
| 9 | 8 4 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
| 10 | 9 | zred | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 11 | inss2 | ⊢ ( 𝐼 ∩ ℕ ) ⊆ ℕ | |
| 12 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 13 | 11 12 | sseqtri | ⊢ ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) |
| 14 | 1 2 | zringlpirlem1 | ⊢ ( 𝜑 → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |
| 15 | infssuzcl | ⊢ ( ( ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) ∧ ( 𝐼 ∩ ℕ ) ≠ ∅ ) → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ ( 𝐼 ∩ ℕ ) ) | |
| 16 | 13 14 15 | sylancr | ⊢ ( 𝜑 → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 17 | 3 16 | eqeltrid | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐼 ∩ ℕ ) ) |
| 18 | 17 | elin2d | ⊢ ( 𝜑 → 𝐺 ∈ ℕ ) |
| 19 | 18 | nnrpd | ⊢ ( 𝜑 → 𝐺 ∈ ℝ+ ) |
| 20 | modlt | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+ ) → ( 𝑋 mod 𝐺 ) < 𝐺 ) | |
| 21 | 10 19 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) < 𝐺 ) |
| 22 | 9 18 | zmodcld | ⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) ∈ ℕ0 ) |
| 23 | 22 | nn0red | ⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) ∈ ℝ ) |
| 24 | 18 | nnred | ⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
| 25 | 23 24 | ltnled | ⊢ ( 𝜑 → ( ( 𝑋 mod 𝐺 ) < 𝐺 ↔ ¬ 𝐺 ≤ ( 𝑋 mod 𝐺 ) ) ) |
| 26 | 21 25 | mpbid | ⊢ ( 𝜑 → ¬ 𝐺 ≤ ( 𝑋 mod 𝐺 ) ) |
| 27 | 9 | zcnd | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 28 | 18 | nncnd | ⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 29 | 10 18 | nndivred | ⊢ ( 𝜑 → ( 𝑋 / 𝐺 ) ∈ ℝ ) |
| 30 | 29 | flcld | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℤ ) |
| 31 | 30 | zcnd | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℂ ) |
| 32 | 28 31 | mulcld | ⊢ ( 𝜑 → ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ∈ ℂ ) |
| 33 | 27 32 | negsubd | ⊢ ( 𝜑 → ( 𝑋 + - ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) = ( 𝑋 − ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) ) |
| 34 | 30 | znegcld | ⊢ ( 𝜑 → - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℤ ) |
| 35 | 34 | zcnd | ⊢ ( 𝜑 → - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℂ ) |
| 36 | 35 28 | mulcomd | ⊢ ( 𝜑 → ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) = ( 𝐺 · - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) |
| 37 | 28 31 | mulneg2d | ⊢ ( 𝜑 → ( 𝐺 · - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) = - ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) |
| 38 | 36 37 | eqtrd | ⊢ ( 𝜑 → ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) = - ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) |
| 39 | 38 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 + ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ) = ( 𝑋 + - ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) ) |
| 40 | modval | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+ ) → ( 𝑋 mod 𝐺 ) = ( 𝑋 − ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) ) | |
| 41 | 10 19 40 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) = ( 𝑋 − ( 𝐺 · ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ) ) ) |
| 42 | 33 39 41 | 3eqtr4rd | ⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) = ( 𝑋 + ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ) ) |
| 43 | zringring | ⊢ ℤring ∈ Ring | |
| 44 | 43 | a1i | ⊢ ( 𝜑 → ℤring ∈ Ring ) |
| 45 | 1 2 3 | zringlpirlem2 | ⊢ ( 𝜑 → 𝐺 ∈ 𝐼 ) |
| 46 | zringmulr | ⊢ · = ( .r ‘ ℤring ) | |
| 47 | 6 5 46 | lidlmcl | ⊢ ( ( ( ℤring ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ ℤring ) ) ∧ ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) ∈ ℤ ∧ 𝐺 ∈ 𝐼 ) ) → ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ∈ 𝐼 ) |
| 48 | 44 1 34 45 47 | syl22anc | ⊢ ( 𝜑 → ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ∈ 𝐼 ) |
| 49 | zringplusg | ⊢ + = ( +g ‘ ℤring ) | |
| 50 | 6 49 | lidlacl | ⊢ ( ( ( ℤring ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ ℤring ) ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ∈ 𝐼 ) ) → ( 𝑋 + ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ) ∈ 𝐼 ) |
| 51 | 44 1 4 48 50 | syl22anc | ⊢ ( 𝜑 → ( 𝑋 + ( - ( ⌊ ‘ ( 𝑋 / 𝐺 ) ) · 𝐺 ) ) ∈ 𝐼 ) |
| 52 | 42 51 | eqeltrd | ⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) ∈ 𝐼 ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → ( 𝑋 mod 𝐺 ) ∈ 𝐼 ) |
| 54 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → ( 𝑋 mod 𝐺 ) ∈ ℕ ) | |
| 55 | 53 54 | elind | ⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → ( 𝑋 mod 𝐺 ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 56 | infssuzle | ⊢ ( ( ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) ∧ ( 𝑋 mod 𝐺 ) ∈ ( 𝐼 ∩ ℕ ) ) → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ≤ ( 𝑋 mod 𝐺 ) ) | |
| 57 | 13 55 56 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ≤ ( 𝑋 mod 𝐺 ) ) |
| 58 | 3 57 | eqbrtrid | ⊢ ( ( 𝜑 ∧ ( 𝑋 mod 𝐺 ) ∈ ℕ ) → 𝐺 ≤ ( 𝑋 mod 𝐺 ) ) |
| 59 | 26 58 | mtand | ⊢ ( 𝜑 → ¬ ( 𝑋 mod 𝐺 ) ∈ ℕ ) |
| 60 | elnn0 | ⊢ ( ( 𝑋 mod 𝐺 ) ∈ ℕ0 ↔ ( ( 𝑋 mod 𝐺 ) ∈ ℕ ∨ ( 𝑋 mod 𝐺 ) = 0 ) ) | |
| 61 | 22 60 | sylib | ⊢ ( 𝜑 → ( ( 𝑋 mod 𝐺 ) ∈ ℕ ∨ ( 𝑋 mod 𝐺 ) = 0 ) ) |
| 62 | orel1 | ⊢ ( ¬ ( 𝑋 mod 𝐺 ) ∈ ℕ → ( ( ( 𝑋 mod 𝐺 ) ∈ ℕ ∨ ( 𝑋 mod 𝐺 ) = 0 ) → ( 𝑋 mod 𝐺 ) = 0 ) ) | |
| 63 | 59 61 62 | sylc | ⊢ ( 𝜑 → ( 𝑋 mod 𝐺 ) = 0 ) |
| 64 | dvdsval3 | ⊢ ( ( 𝐺 ∈ ℕ ∧ 𝑋 ∈ ℤ ) → ( 𝐺 ∥ 𝑋 ↔ ( 𝑋 mod 𝐺 ) = 0 ) ) | |
| 65 | 18 9 64 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∥ 𝑋 ↔ ( 𝑋 mod 𝐺 ) = 0 ) ) |
| 66 | 63 65 | mpbird | ⊢ ( 𝜑 → 𝐺 ∥ 𝑋 ) |