This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Proof shortened by AV, 27-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringlpir | ⊢ ℤring ∈ LPIR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring | ⊢ ℤring ∈ Ring | |
| 2 | eleq1 | ⊢ ( 𝑥 = { 0 } → ( 𝑥 ∈ ( LPIdeal ‘ ℤring ) ↔ { 0 } ∈ ( LPIdeal ‘ ℤring ) ) ) | |
| 3 | simpl | ⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → 𝑥 ∈ ( LIdeal ‘ ℤring ) ) | |
| 4 | simpr | ⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → 𝑥 ≠ { 0 } ) | |
| 5 | eqid | ⊢ inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) = inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) | |
| 6 | 3 4 5 | zringlpirlem2 | ⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∈ 𝑥 ) |
| 7 | simpll | ⊢ ( ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ ( LIdeal ‘ ℤring ) ) | |
| 8 | simplr | ⊢ ( ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ≠ { 0 } ) | |
| 9 | simpr | ⊢ ( ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) | |
| 10 | 7 8 5 9 | zringlpirlem3 | ⊢ ( ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) ∧ 𝑧 ∈ 𝑥 ) → inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) |
| 11 | 10 | ralrimiva | ⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → ∀ 𝑧 ∈ 𝑥 inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) |
| 12 | breq1 | ⊢ ( 𝑦 = inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) → ( 𝑦 ∥ 𝑧 ↔ inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) ) | |
| 13 | 12 | ralbidv | ⊢ ( 𝑦 = inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) → ( ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ↔ ∀ 𝑧 ∈ 𝑥 inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) ) |
| 14 | 13 | rspcev | ⊢ ( ( inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 inf ( ( 𝑥 ∩ ℕ ) , ℝ , < ) ∥ 𝑧 ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) |
| 15 | 6 11 14 | syl2anc | ⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) |
| 16 | eqid | ⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) | |
| 17 | eqid | ⊢ ( LPIdeal ‘ ℤring ) = ( LPIdeal ‘ ℤring ) | |
| 18 | dvdsrzring | ⊢ ∥ = ( ∥r ‘ ℤring ) | |
| 19 | 16 17 18 | lpigen | ⊢ ( ( ℤring ∈ Ring ∧ 𝑥 ∈ ( LIdeal ‘ ℤring ) ) → ( 𝑥 ∈ ( LPIdeal ‘ ℤring ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) ) |
| 20 | 1 19 | mpan | ⊢ ( 𝑥 ∈ ( LIdeal ‘ ℤring ) → ( 𝑥 ∈ ( LPIdeal ‘ ℤring ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → ( 𝑥 ∈ ( LPIdeal ‘ ℤring ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ) ) |
| 22 | 15 21 | mpbird | ⊢ ( ( 𝑥 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑥 ≠ { 0 } ) → 𝑥 ∈ ( LPIdeal ‘ ℤring ) ) |
| 23 | zring0 | ⊢ 0 = ( 0g ‘ ℤring ) | |
| 24 | 17 23 | lpi0 | ⊢ ( ℤring ∈ Ring → { 0 } ∈ ( LPIdeal ‘ ℤring ) ) |
| 25 | 1 24 | mp1i | ⊢ ( 𝑥 ∈ ( LIdeal ‘ ℤring ) → { 0 } ∈ ( LPIdeal ‘ ℤring ) ) |
| 26 | 2 22 25 | pm2.61ne | ⊢ ( 𝑥 ∈ ( LIdeal ‘ ℤring ) → 𝑥 ∈ ( LPIdeal ‘ ℤring ) ) |
| 27 | 26 | ssriv | ⊢ ( LIdeal ‘ ℤring ) ⊆ ( LPIdeal ‘ ℤring ) |
| 28 | 17 16 | islpir2 | ⊢ ( ℤring ∈ LPIR ↔ ( ℤring ∈ Ring ∧ ( LIdeal ‘ ℤring ) ⊆ ( LPIdeal ‘ ℤring ) ) ) |
| 29 | 1 27 28 | mpbir2an | ⊢ ℤring ∈ LPIR |