This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| lidlacl.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| Assertion | lidlacl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlacl.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | rlmplusg | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 4 | 2 3 | eqtri | ⊢ + = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 5 | 4 | oveqi | ⊢ ( 𝑋 + 𝑌 ) = ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 ) |
| 6 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 8 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) | |
| 9 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 10 | 1 9 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 | 8 10 | eleqtrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 12 | 7 11 | jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) ) |
| 13 | eqid | ⊢ ( +g ‘ ( ringLMod ‘ 𝑅 ) ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 14 | eqid | ⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 15 | 13 14 | lssvacl | ⊢ ( ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 ) ∈ 𝐼 ) |
| 16 | 12 15 | sylan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 ) ∈ 𝐼 ) |
| 17 | 5 16 | eqeltrid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐼 ) |