This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zringlpir . All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Proof shortened by AV, 27-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zringlpirlem.i | |- ( ph -> I e. ( LIdeal ` ZZring ) ) |
|
| zringlpirlem.n0 | |- ( ph -> I =/= { 0 } ) |
||
| zringlpirlem.g | |- G = inf ( ( I i^i NN ) , RR , < ) |
||
| zringlpirlem.x | |- ( ph -> X e. I ) |
||
| Assertion | zringlpirlem3 | |- ( ph -> G || X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringlpirlem.i | |- ( ph -> I e. ( LIdeal ` ZZring ) ) |
|
| 2 | zringlpirlem.n0 | |- ( ph -> I =/= { 0 } ) |
|
| 3 | zringlpirlem.g | |- G = inf ( ( I i^i NN ) , RR , < ) |
|
| 4 | zringlpirlem.x | |- ( ph -> X e. I ) |
|
| 5 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 6 | eqid | |- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
|
| 7 | 5 6 | lidlss | |- ( I e. ( LIdeal ` ZZring ) -> I C_ ZZ ) |
| 8 | 1 7 | syl | |- ( ph -> I C_ ZZ ) |
| 9 | 8 4 | sseldd | |- ( ph -> X e. ZZ ) |
| 10 | 9 | zred | |- ( ph -> X e. RR ) |
| 11 | inss2 | |- ( I i^i NN ) C_ NN |
|
| 12 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 13 | 11 12 | sseqtri | |- ( I i^i NN ) C_ ( ZZ>= ` 1 ) |
| 14 | 1 2 | zringlpirlem1 | |- ( ph -> ( I i^i NN ) =/= (/) ) |
| 15 | infssuzcl | |- ( ( ( I i^i NN ) C_ ( ZZ>= ` 1 ) /\ ( I i^i NN ) =/= (/) ) -> inf ( ( I i^i NN ) , RR , < ) e. ( I i^i NN ) ) |
|
| 16 | 13 14 15 | sylancr | |- ( ph -> inf ( ( I i^i NN ) , RR , < ) e. ( I i^i NN ) ) |
| 17 | 3 16 | eqeltrid | |- ( ph -> G e. ( I i^i NN ) ) |
| 18 | 17 | elin2d | |- ( ph -> G e. NN ) |
| 19 | 18 | nnrpd | |- ( ph -> G e. RR+ ) |
| 20 | modlt | |- ( ( X e. RR /\ G e. RR+ ) -> ( X mod G ) < G ) |
|
| 21 | 10 19 20 | syl2anc | |- ( ph -> ( X mod G ) < G ) |
| 22 | 9 18 | zmodcld | |- ( ph -> ( X mod G ) e. NN0 ) |
| 23 | 22 | nn0red | |- ( ph -> ( X mod G ) e. RR ) |
| 24 | 18 | nnred | |- ( ph -> G e. RR ) |
| 25 | 23 24 | ltnled | |- ( ph -> ( ( X mod G ) < G <-> -. G <_ ( X mod G ) ) ) |
| 26 | 21 25 | mpbid | |- ( ph -> -. G <_ ( X mod G ) ) |
| 27 | 9 | zcnd | |- ( ph -> X e. CC ) |
| 28 | 18 | nncnd | |- ( ph -> G e. CC ) |
| 29 | 10 18 | nndivred | |- ( ph -> ( X / G ) e. RR ) |
| 30 | 29 | flcld | |- ( ph -> ( |_ ` ( X / G ) ) e. ZZ ) |
| 31 | 30 | zcnd | |- ( ph -> ( |_ ` ( X / G ) ) e. CC ) |
| 32 | 28 31 | mulcld | |- ( ph -> ( G x. ( |_ ` ( X / G ) ) ) e. CC ) |
| 33 | 27 32 | negsubd | |- ( ph -> ( X + -u ( G x. ( |_ ` ( X / G ) ) ) ) = ( X - ( G x. ( |_ ` ( X / G ) ) ) ) ) |
| 34 | 30 | znegcld | |- ( ph -> -u ( |_ ` ( X / G ) ) e. ZZ ) |
| 35 | 34 | zcnd | |- ( ph -> -u ( |_ ` ( X / G ) ) e. CC ) |
| 36 | 35 28 | mulcomd | |- ( ph -> ( -u ( |_ ` ( X / G ) ) x. G ) = ( G x. -u ( |_ ` ( X / G ) ) ) ) |
| 37 | 28 31 | mulneg2d | |- ( ph -> ( G x. -u ( |_ ` ( X / G ) ) ) = -u ( G x. ( |_ ` ( X / G ) ) ) ) |
| 38 | 36 37 | eqtrd | |- ( ph -> ( -u ( |_ ` ( X / G ) ) x. G ) = -u ( G x. ( |_ ` ( X / G ) ) ) ) |
| 39 | 38 | oveq2d | |- ( ph -> ( X + ( -u ( |_ ` ( X / G ) ) x. G ) ) = ( X + -u ( G x. ( |_ ` ( X / G ) ) ) ) ) |
| 40 | modval | |- ( ( X e. RR /\ G e. RR+ ) -> ( X mod G ) = ( X - ( G x. ( |_ ` ( X / G ) ) ) ) ) |
|
| 41 | 10 19 40 | syl2anc | |- ( ph -> ( X mod G ) = ( X - ( G x. ( |_ ` ( X / G ) ) ) ) ) |
| 42 | 33 39 41 | 3eqtr4rd | |- ( ph -> ( X mod G ) = ( X + ( -u ( |_ ` ( X / G ) ) x. G ) ) ) |
| 43 | zringring | |- ZZring e. Ring |
|
| 44 | 43 | a1i | |- ( ph -> ZZring e. Ring ) |
| 45 | 1 2 3 | zringlpirlem2 | |- ( ph -> G e. I ) |
| 46 | zringmulr | |- x. = ( .r ` ZZring ) |
|
| 47 | 6 5 46 | lidlmcl | |- ( ( ( ZZring e. Ring /\ I e. ( LIdeal ` ZZring ) ) /\ ( -u ( |_ ` ( X / G ) ) e. ZZ /\ G e. I ) ) -> ( -u ( |_ ` ( X / G ) ) x. G ) e. I ) |
| 48 | 44 1 34 45 47 | syl22anc | |- ( ph -> ( -u ( |_ ` ( X / G ) ) x. G ) e. I ) |
| 49 | zringplusg | |- + = ( +g ` ZZring ) |
|
| 50 | 6 49 | lidlacl | |- ( ( ( ZZring e. Ring /\ I e. ( LIdeal ` ZZring ) ) /\ ( X e. I /\ ( -u ( |_ ` ( X / G ) ) x. G ) e. I ) ) -> ( X + ( -u ( |_ ` ( X / G ) ) x. G ) ) e. I ) |
| 51 | 44 1 4 48 50 | syl22anc | |- ( ph -> ( X + ( -u ( |_ ` ( X / G ) ) x. G ) ) e. I ) |
| 52 | 42 51 | eqeltrd | |- ( ph -> ( X mod G ) e. I ) |
| 53 | 52 | adantr | |- ( ( ph /\ ( X mod G ) e. NN ) -> ( X mod G ) e. I ) |
| 54 | simpr | |- ( ( ph /\ ( X mod G ) e. NN ) -> ( X mod G ) e. NN ) |
|
| 55 | 53 54 | elind | |- ( ( ph /\ ( X mod G ) e. NN ) -> ( X mod G ) e. ( I i^i NN ) ) |
| 56 | infssuzle | |- ( ( ( I i^i NN ) C_ ( ZZ>= ` 1 ) /\ ( X mod G ) e. ( I i^i NN ) ) -> inf ( ( I i^i NN ) , RR , < ) <_ ( X mod G ) ) |
|
| 57 | 13 55 56 | sylancr | |- ( ( ph /\ ( X mod G ) e. NN ) -> inf ( ( I i^i NN ) , RR , < ) <_ ( X mod G ) ) |
| 58 | 3 57 | eqbrtrid | |- ( ( ph /\ ( X mod G ) e. NN ) -> G <_ ( X mod G ) ) |
| 59 | 26 58 | mtand | |- ( ph -> -. ( X mod G ) e. NN ) |
| 60 | elnn0 | |- ( ( X mod G ) e. NN0 <-> ( ( X mod G ) e. NN \/ ( X mod G ) = 0 ) ) |
|
| 61 | 22 60 | sylib | |- ( ph -> ( ( X mod G ) e. NN \/ ( X mod G ) = 0 ) ) |
| 62 | orel1 | |- ( -. ( X mod G ) e. NN -> ( ( ( X mod G ) e. NN \/ ( X mod G ) = 0 ) -> ( X mod G ) = 0 ) ) |
|
| 63 | 59 61 62 | sylc | |- ( ph -> ( X mod G ) = 0 ) |
| 64 | dvdsval3 | |- ( ( G e. NN /\ X e. ZZ ) -> ( G || X <-> ( X mod G ) = 0 ) ) |
|
| 65 | 18 9 64 | syl2anc | |- ( ph -> ( G || X <-> ( X mod G ) = 0 ) ) |
| 66 | 63 65 | mpbird | |- ( ph -> G || X ) |