This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringinvg | ⊢ ( 𝐴 ∈ ℤ → - 𝐴 = ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | negidd | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + - 𝐴 ) = 0 ) |
| 3 | zringgrp | ⊢ ℤring ∈ Grp | |
| 4 | id | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ ) | |
| 5 | znegcl | ⊢ ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ ) | |
| 6 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 7 | zringplusg | ⊢ + = ( +g ‘ ℤring ) | |
| 8 | zring0 | ⊢ 0 = ( 0g ‘ ℤring ) | |
| 9 | eqid | ⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) | |
| 10 | 6 7 8 9 | grpinvid1 | ⊢ ( ( ℤring ∈ Grp ∧ 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℤ ) → ( ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
| 11 | 3 4 5 10 | mp3an2i | ⊢ ( 𝐴 ∈ ℤ → ( ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
| 12 | 2 11 | mpbird | ⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ) |
| 13 | 12 | eqcomd | ⊢ ( 𝐴 ∈ ℤ → - 𝐴 = ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |