This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| lidlcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| lidlmcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | lidlmcl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | lidlmcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝑅 ∈ Rng ) |
| 6 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 8 | 1 7 | lidl0cl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 9 | 5 6 8 | 3jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ) |
| 10 | 7 2 3 1 | rnglidlmcl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |
| 11 | 9 10 | sylan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |